Subgradient-based Markov Chain Monte Carlo particle methods for discrete-time nonlinear filtering

被引:2
|
作者
Carmi, Avishy Y. [1 ]
Mihaylova, Lyudmila [2 ]
Septier, Francois [3 ]
机构
[1] Ben Gurion Univ Negev, Dept Mech Engn, IL-84105 Beer Sheva, Israel
[2] Univ Sheffield, Automat Control & Syst Engn, Sheffield S10 2TN, S Yorkshire, England
[3] CRIStAL UMR CNRS 9189, Inst Mines Telecom Telecom Lille, Paris, France
来源
SIGNAL PROCESSING | 2016年 / 120卷
基金
英国工程与自然科学研究理事会;
关键词
Markov chain Monte Carlo methods; High dimensional systems; Compressed sensing; L1; optimisation; Filtering; CURSE;
D O I
10.1016/j.sigpro.2015.10.015
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work shows how a carefully designed instrumental distribution can improve the performance of a Markov chain Monte Carlo (MCMC) filter for systems with a high state dimension. We propose a special subgradient-based kernel from which candidate Moves are drawn. This facilitates the implementation of the filtering algorithm in high dimensional settings using a remarkably small number of particles. We demonstrate our approach in solving a nonlinear non-Gaussian high-dimensional problem in comparison with a recently developed block particle filter and over a dynamic compressed sensing (l(1) constrained) algorithm. The results show high estimation accuracy. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:532 / 536
页数:5
相关论文
共 50 条
  • [1] Particle Markov chain Monte Carlo methods
    Andrieu, Christophe
    Doucet, Arnaud
    Holenstein, Roman
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 269 - 342
  • [2] Hug and hop: a discrete-time, nonreversible Markov chain Monte Carlo algorithm
    Ludkin, M.
    Sherlock, C.
    [J]. BIOMETRIKA, 2023, 110 (02) : 301 - 318
  • [3] Dynamic discrete-time duration models: Estimation via Markov Chain Monte Carlo
    Fahrmeir, L
    Knorr-Held, L
    [J]. SOCIOLOGICAL METHODOLOGY 1997, VOL 27, 1997, 27 : 417 - 452
  • [4] Discrete optimization, SPSA and Markov Chain Monte Carlo methods
    Gerencsér, L
    Hill, SD
    Vágó, Z
    Vincze, Z
    [J]. PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 3814 - 3819
  • [5] Discrete optimization, SPSA and Markov Chain Monte Carlo methods
    Gerencsér, L
    Hill, SD
    Vágo, Z
    [J]. PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 2346 - 2347
  • [6] Distributed Markov Chain Monte Carlo kernel based particle filtering for object tracking
    Wang, Danling
    Zhang, Qin
    Morris, John
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2012, 56 (02) : 303 - 314
  • [7] Distributed Markov Chain Monte Carlo kernel based particle filtering for object tracking
    Danling Wang
    Qin Zhang
    John Morris
    [J]. Multimedia Tools and Applications, 2012, 56 : 303 - 314
  • [8] The Monte-Carlo method for filtering with discrete-time observations
    Del Moral, P
    Jacod, J
    Protter, P
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2001, 120 (03) : 346 - 368
  • [9] The Monte-Carlo method for filtering with discrete-time observations
    Pierre Del Moral
    Jean Jacod
    Philip Protter
    [J]. Probability Theory and Related Fields, 2001, 120 : 346 - 368
  • [10] On nonlinear Markov chain Monte Carlo
    Andrieu, Christophe
    Jasra, Ajay
    Doucet, Arnaud
    Del Moral, Pierre
    [J]. BERNOULLI, 2011, 17 (03) : 987 - 1014