Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes
被引:41
|
作者:
Cepni, Oguzhan
论文数: 0引用数: 0
h-index: 0
机构:
Cent Bank Republ Turkey, Anafartalar Mah Istiklal Cad 10, TR-06050 Ankara, TurkeyCent Bank Republ Turkey, Anafartalar Mah Istiklal Cad 10, TR-06050 Ankara, Turkey
Cepni, Oguzhan
[1
]
Guney, I. Ethem
论文数: 0引用数: 0
h-index: 0
机构:
Cent Bank Republ Turkey, Strategy & Corp Governance Dept, Anafartalar Mah Istiklal Cad 10, TR-06050 Ankara, TurkeyCent Bank Republ Turkey, Anafartalar Mah Istiklal Cad 10, TR-06050 Ankara, Turkey
Guney, I. Ethem
[2
]
Swanson, Norman R.
论文数: 0引用数: 0
h-index: 0
机构:
Dept Econ, 75 Hamilton St, New Brunswick, NJ 08901 USACent Bank Republ Turkey, Anafartalar Mah Istiklal Cad 10, TR-06050 Ankara, Turkey
Swanson, Norman R.
[3
]
机构:
[1] Cent Bank Republ Turkey, Anafartalar Mah Istiklal Cad 10, TR-06050 Ankara, Turkey
[2] Cent Bank Republ Turkey, Strategy & Corp Governance Dept, Anafartalar Mah Istiklal Cad 10, TR-06050 Ankara, Turkey
[3] Dept Econ, 75 Hamilton St, New Brunswick, NJ 08901 USA
This paper contributes to the nascent literature on nowcasting and forecasting GDP in emerging market economies using big data methods. This is done by analyzing the usefulness of various dimension-reduction, machine learning and shrinkage methods, including sparse principal component analysis (SPCA), the elastic net, the least absolute shrinkage operator, and least angle regression when constructing predictions using latent global macroeconomic and financial factors (diffusion indexes) in a dynamic factor model (DFM). We also utilize a judgmental dimension-reduction method called the Bloomberg Relevance Index (BRI), which is an index that assigns a measure of importance to each variable in a dataset depending on the variable's usage by market participants. Our empirical analysis shows that, when specified using dimension-reduction methods (particularly BRI and SPCA), DFMs yield superior predictions relative to both benchmark linear econometric models and simple DEMs. Moreover, global financial and macroeconomic (business cycle) diffusion indexes constructed using targeted predictors are found to be important in four of the five emerging market economies that we study (Brazil, Mexico, South Africa, and Turkey). These findings point to the importance of spillover effects across emerging market economies, and underscore the significance of characterizing such linkages parsimoniously when utilizing high-dimensional global datasets. (C) 2018 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
机构:
Cent Bank Republ Turkey, Anafartalar Mah Istiklal Cad 10, TR-06050 Ankara, TurkeyCent Bank Republ Turkey, Anafartalar Mah Istiklal Cad 10, TR-06050 Ankara, Turkey
Cepni, Oguzhan
Guney, I. Ethem
论文数: 0引用数: 0
h-index: 0
机构:
Cent Bank Republ Turkey, Anafartalar Mah Istiklal Cad 10, TR-06050 Ankara, TurkeyCent Bank Republ Turkey, Anafartalar Mah Istiklal Cad 10, TR-06050 Ankara, Turkey
Guney, I. Ethem
Swanson, Norman R.
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Econ, New Brunswick, NJ USACent Bank Republ Turkey, Anafartalar Mah Istiklal Cad 10, TR-06050 Ankara, Turkey