Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma

被引:113
|
作者
Elshafeey, Nabil [1 ]
Kotrotsou, Aikaterini [1 ,2 ]
Hassan, Ahmed [1 ]
Elshafei, Nancy [2 ,3 ]
Hassan, Islam [2 ]
Ahmed, Sara [2 ]
Abrol, Srishti [1 ]
Agarwal, Anand [1 ]
El Salek, Kamel [1 ]
Bergamaschi, Samuel [4 ]
Acharya, Jay [4 ]
Moron, Fanny E. [5 ]
Law, Meng [4 ,6 ]
Fuller, Gregory N. [7 ]
Huse, Jason T. [7 ]
Zinn, Pascal O. [8 ,9 ,10 ]
Colen, Rivka R. [1 ,2 ,10 ,11 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Diagnost Radiol, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Canc Syst Imaging, Houston, TX 77054 USA
[3] Natl Res Ctr, Dept Restorat & Dent Mat, Cairo 12622, Egypt
[4] Univ Southern Calif, Keck Sch Med, Dept Radiol, Los Angeles, CA 90033 USA
[5] Baylor Coll Med, Dept Radiol, Houston, TX 77030 USA
[6] Alfred Hlth & Monash Univ, Melbourne, Vic 3004, Australia
[7] Univ Texas MD Anderson Canc Ctr, Dept Pathol Anat & Translat Mol Pathol, Houston, TX 77030 USA
[8] Baylor Coll Med, Dept Neurosurg, Houston, TX 77030 USA
[9] Univ Pittsburgh, Dept Neurol Surg, Pittsburgh, PA 15213 USA
[10] UPMC, Hillman Canc Ctr, Pittsburgh, PA 15232 USA
[11] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15213 USA
关键词
HIGH-GRADE GLIOMAS; TEXTURE ANALYSIS; BRAIN-TUMORS; MRI; NECROSIS; RADIOTHERAPY; SURVIVAL; CRITERIA; THERAPY; TRACER;
D O I
10.1038/s41467-019-11007-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pseudoprogression (PsP) is a diagnostic clinical dilemma in cancer. In this study, we retrospectively analyse glioblastoma patients, and using their dynamic susceptibility contrast and dynamic contrast-enhanced perfusion MRI images we build a classifier using radiomic features obtained from both Ktrans and rCBV maps coupled with support vector machines. We achieve an accuracy of 90.82% (area under the curve (AUC) = 89.10%, sensitivity = 91.36%, 67 specificity = 88.24%, p = 0.017) in differentiating between pseudoprogression (PsP) and progressive disease (PD). The diagnostic performances of the models built using radiomic features from Ktrans and rCBV separately were equally high (Ktrans: AUC = 94%, 69 p = 0.012; rCBV: AUC = 89.8%, p = 0.004). Thus, this MR perfusion-based radiomic model demonstrates high accuracy, sensitivity and specificity in discriminating PsP from PD, thus provides a reliable alternative for noninvasive identification of PsP versus PD at the time of clinical/radiologic question. This study also illustrates the successful application of radiomic analysis as an advanced processing step on different MR perfusion maps.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma
    Nabil Elshafeey
    Aikaterini Kotrotsou
    Ahmed Hassan
    Nancy Elshafei
    Islam Hassan
    Sara Ahmed
    Srishti Abrol
    Anand Agarwal
    Kamel El Salek
    Samuel Bergamaschi
    Jay Acharya
    Fanny E. Moron
    Meng Law
    Gregory N. Fuller
    Jason T. Huse
    Pascal O. Zinn
    Rivka R. Colen
    [J]. Nature Communications, 10
  • [2] Multicenter study to demonstrate radiomic texture features derived from MR perfusion images of pseudoprogression compared to true progression in glioblastoma patients.
    Elshafeey, Nabil
    Kotrotsou, Aikaterini
    Camejo, Dunia Giniebra
    Abrol, Srishti
    Hassan, Islam
    El Salek, Kamel
    Hassan, Ahmed
    Shaaban, Ahmed
    Bergamaschi, Samuel
    Moron, Fanny E.
    Law, Meng
    Zinn, Pascal
    Colen, Rivka R.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2017, 35
  • [3] MULTI-CENTER STUDY DEMONSTRATES RADIOMIC TEXTURE FEATURES DERIVED FROM MR PERFUSION IMAGES PREDICT PSEUDOPROGRESSION FROM TRUE PROGRESSION IN GLIOBLASTOMA PATIENTS
    Elshafeey, Nabil
    Kotrotsou, Aikaterini
    Abrol, Srishti
    Hassan, Islam
    Hassan, Ahmed
    Agarwal, Anand
    Salek, Kamel
    Bergamaschi, Samuel
    Moron, Fanny
    Law, Meng
    Zinn, Pascal
    Colen, Rivka
    [J]. NEURO-ONCOLOGY, 2017, 19 : 143 - 143
  • [4] Radiomic Signatures on Magnetic Resonance Imaging in Glioblastoma to Identify distinct Survival Classes
    Ramu, S. Kathavarayan
    Byale, A.
    Acharya, D.
    [J]. EUROPEAN JOURNAL OF NEUROLOGY, 2022, 29 : 808 - 809
  • [5] Machine-learning based classification of glioblastoma using delta-radiomic features derived from dynamic susceptibility contrast enhanced magnetic resonance images
    Jeong, Jiwoong
    Wang, Liya
    Ji, Bing
    Lei, Yang
    Ali, Arif
    Liu, Tian
    Curran, Walter J.
    Mao, Hui
    Yang, Xiaofeng
    [J]. QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2019, 9 (07) : 1201 - 1213
  • [6] Robustness of radiomic features in magnetic resonance imaging for patients with glioblastoma: Multi-center study
    Saltybaeva, Natalia
    Tanadini-Lang, Stephanie
    Vuong, Diem
    Burgermeister, Simon
    Mayinger, Michael
    Bink, Andrea
    Andratschke, Nicolaus
    Guckenberger, Matthias
    Bogowicz, Marta
    [J]. PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2022, 22 : 131 - 136
  • [7] Magnetic resonance (MR) perfusion imaging to differentiate early progression from pseudoprogression following chemoradiotherapy for glioblastoma (GBM).
    Graber, J. J.
    Young, R. J.
    Gupta, A.
    Shah, A. D.
    Chan, T. A.
    Zhang, Z.
    Shi, W.
    Beal, K.
    Omuro, A. M. P.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (15)
  • [8] DISTINGUISHING GLIOBLASTOMA RECURRENCE FROM PSEUDOPROGRESSION WITH MAGNETIC RESONANCE IMAGING AND SPECTROSCOPY
    Caulkins, H. K.
    Serkova, N.
    [J]. JOURNAL OF INVESTIGATIVE MEDICINE, 2017, 65 (01) : 248 - 249
  • [9] Magnetic resonance spectroscopy outperforms perfusion in distinguishing between pseudoprogression and disease progression in patients with glioblastoma
    El-Abtah, Mohamed E.
    Talati, Pratik
    Fu, Melanie
    Chun, Benjamin
    Clark, Patrick
    Peters, Anna
    Ranasinghe, Anthony
    He, Julian
    Rapalino, Otto
    Batchelor, Tracy T.
    Gonzalez, R. Gilberto
    Curry, William T.
    Dietrich, Jorg
    Gerstner, Elizabeth R.
    Ratai, Eva-Maria
    [J]. NEURO-ONCOLOGY ADVANCES, 2022, 4 (01)
  • [10] USING RADIOMIC FEATURES FROM DAILY MAGNETIC RESONANCE IMAGING TO PREDICT RESPONSE TO RADIATION THERAPY IN GLIOBLASTOMA PATIENTS: A PILOT STUDY
    Cullison, Kaylie
    Simpson, Garrett
    Maziero, Danilo
    Jones, Kolton
    Stoyanova, Radka
    Diwanji, Tejan
    Azzam, Gregory
    De la Fuente, Macarena
    Ford, John
    Mellon, Eric
    [J]. NEURO-ONCOLOGY, 2021, 23 : 142 - 142