Spatial behaviour in plane incompressible elasticity on a half-strip

被引:3
|
作者
Knops, RJ [1 ]
Villaggio, P
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh, Midlothian, Scotland
[2] Univ Pisa, Dipartimento Ingn Stutturale, Pisa, Italy
关键词
D O I
10.1090/qam/1753404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Growth and decay estimates are derived for an incompressible homogeneous isotropic elastic material occupying a plane semi-infinite strip in equilibrium under self-equilibrated loads on the base and zero traction along the lateral sides. The estimates depend upon a pair of differential inequalities for two cross-sectional line integrals related to different kinds of energy fluxes. A comparison with the exact solution shows that the estimates are somewhat conservative. The method, however, is applicable to non-rectangular plane regions.
引用
收藏
页码:355 / 367
页数:13
相关论文
共 50 条
  • [1] PLANE PROBLEM OF ELASTICITY THEORY FOR A HALF-STRIP
    GUSEINZADE, MI
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1977, 41 (01): : 115 - 124
  • [2] CONTACT PROBLEM OF ELASTICITY THEORY FOR A HALF-STRIP
    KOPASENK.VV
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1968, 32 (04): : 739 - &
  • [3] A plane problem in elasticity theory for a half-strip with given normal displacement at the base
    Lamzyuk V.D.
    Sotnikova S.D.
    Journal of Mathematical Sciences, 1998, 90 (6) : 2459 - 2463
  • [4] IMPACT OF A RIGID PLATE ON A HALF-STRIP OF INCOMPRESSIBLE LIQUID
    TSELNIK, DS
    JOURNAL OF HYDRONAUTICS, 1980, 14 (02): : 63 - 64
  • [5] On the exact solutions of the biharmonic problem of the theory of elasticity in a half-strip
    Mikhail D. Kovalenko
    Irina V. Menshova
    Alexander P. Kerzhaev
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [6] A MIXED BOUNDARY-PROBLEM ON THE THEORY OF ELASTICITY FOR A HALF-STRIP
    GOMILKO, AM
    MARTYNENKO, OM
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1987, (05): : 36 - 40
  • [7] On the exact solutions of the biharmonic problem of the theory of elasticity in a half-strip
    Kovalenko, Mikhail D.
    Menshova, Irina V.
    Kerzhaev, Alexander P.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (05):
  • [8] On the reduced module of a half-strip
    Emel'yanov E.G.
    Journal of Mathematical Sciences, 2006, 133 (6) : 1648 - 1651
  • [9] The Order of the Dirichlet Series in the Half-Strip
    Gaisin A.M.
    Aitkuzhina N.N.
    Journal of Mathematical Sciences, 2019, 241 (6) : 686 - 700
  • [10] Identification of Unknown Filter in a Half-Strip
    Volodymyr Dilnyi
    Khrystyna Huk
    Acta Applicandae Mathematicae, 2020, 165 : 199 - 205