An epidemic model to evaluate the homogeneous mixing assumption
被引:18
|
作者:
Turnes, P. P., Jr.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Presbiteriana Mackenzie, Fac Comp & Informat, BR-01302907 Sao Paulo, BrazilUniv Presbiteriana Mackenzie, Fac Comp & Informat, BR-01302907 Sao Paulo, Brazil
Turnes, P. P., Jr.
[1
]
Monteiro, L. H. A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Presbiteriana Mackenzie, Escola Engn, BR-01302907 Sao Paulo, Brazil
Univ Sao Paulo, Dept Engn Telecomunicacoes & Controle, Sao Paulo, BrazilUniv Presbiteriana Mackenzie, Fac Comp & Informat, BR-01302907 Sao Paulo, Brazil
Monteiro, L. H. A.
[2
,3
]
机构:
[1] Univ Presbiteriana Mackenzie, Fac Comp & Informat, BR-01302907 Sao Paulo, Brazil
[2] Univ Presbiteriana Mackenzie, Escola Engn, BR-01302907 Sao Paulo, Brazil
[3] Univ Sao Paulo, Dept Engn Telecomunicacoes & Controle, Sao Paulo, Brazil
Bifurcation;
Epidemiology;
Gonorrhea;
Hepatitis C virus;
Human immunodeficiency virus;
Obesity;
BASIC REPRODUCTION NUMBER;
LARGE SOCIAL NETWORK;
NATURAL-HISTORY;
OBESITY;
BEHAVIOR;
HCV;
OUTBREAKS;
DYNAMICS;
SPREAD;
D O I:
10.1016/j.cnsns.2014.01.029
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Many epidemic models are written in terms of ordinary differential equations (ODE). This approach relies on the homogeneous mixing assumption; that is, the topological structure of the contact network established by the individuals of the host population is not relevant to predict the spread of a pathogen in this population. Here, we propose an epidemic model based on ODE to study the propagation of contagious diseases conferring no immunity. The state variables of this model are the percentages of susceptible individuals, infectious individuals and empty space. We show that this dynamical system can experience transcritical and Hopf bifurcations. Then, we employ this model to evaluate the validity of the homogeneous mixing assumption by using real data related to the transmission of gonorrhea, hepatitis C virus, human immunodeficiency virus, and obesity. (C) 2014 Elsevier B.V. All rights reserved.
机构:
N Univ China, Dept Math, Taiyuan 030051, Peoples R China
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R ChinaN Univ China, Dept Math, Taiyuan 030051, Peoples R China
Liu Mao-Xing
Ruan Jiong
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R ChinaN Univ China, Dept Math, Taiyuan 030051, Peoples R China