Approximate Solutions for Solving Fractional-order Painleve Equations

被引:6
|
作者
Izadi, Mohammad [1 ]
机构
[1] Shahid Bahonar Univ Kerman, Fac Math & Comp, Dept Appl Math, Kerman, Iran
来源
CONTEMPORARY MATHEMATICS | 2019年 / 1卷 / 01期
关键词
Caputo fractional derivative; Chebyshev functions; Collocation method; Painleve equations;
D O I
10.37256/cm.11201947.12-24
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, Chebyshev orthogonal polynomials are employed as basis functions in a collocation scheme to solve the nonlinear Painleve initial value problems known as the first and second Painleve equations. Using the collocation points, representing the solution and its fractional derivative (in the Caputo sense) in matrix forms, and the matrix operations, the proposed technique transforms a solution of the initial-value problem for the Painleve equations into a system of nonlinear algebraic equations. To get ride of nonlinearlity, the technique of quasi-linearization is also applied, which converts the equations into a sequence of linear algebraic equations. The accuracy and efficiency of the presented methods are investigated by some test examples and a comparison has been made with some existing available numerical schemes.
引用
收藏
页码:12 / 24
页数:13
相关论文
共 50 条
  • [1] Fractional-order Legendre functions for solving fractional-order differential equations
    Kazem, S.
    Abbasbandy, S.
    Kumar, Sunil
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (07) : 5498 - 5510
  • [2] On approximate solutions for a class of semilinear fractional-order differential equations in Banach spaces
    Kamenskii M.
    Obukhovskii V.
    Petrosyan G.
    Yao J.-C.
    Fixed Point Theory and Applications, 2017 (1)
  • [3] Approximate solutions for solving nonlinear variable-order fractional Riccati differential equations
    Doha, Eid H.
    Abdelkawy, Mohamed A.
    Amin, Ahmed Z. M.
    Baleanu, Dumitru
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (02): : 176 - 188
  • [4] Fractional-Order Legendre Functions for Solving Fractional Delay Differential Equations
    Mesgari, Samira
    Barikbin, Zahra
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (06): : 1673 - 1683
  • [5] Fractional-Order Legendre Functions for Solving Fractional Delay Differential Equations
    Samira Mesgari
    Zahra Barikbin
    Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44 : 1673 - 1683
  • [6] ON APPROXIMATE SOLUTIONS OF FRACTIONAL ORDER PARTIAL DIFFERENTIAL EQUATIONS
    Chohan, Muhammad Ikhlaq
    Ali, Sajjad
    Shah, Kamal
    Arif, Muhammad
    THERMAL SCIENCE, 2018, 22 : S287 - S299
  • [7] A new operational matrix for solving fractional-order differential equations
    Saadatmandi, Abbas
    Dehghan, Mehdi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) : 1326 - 1336
  • [8] Fundamental solutions of the general fractional-order diffusion equations
    Yang, Xiao-Jun
    Gao, Feng
    Ju, Yang
    Zhou, Hong-Wei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) : 9312 - 9320
  • [9] Oscillation Results for Solutions of Fractional-Order Differential Equations
    Alzabut, Jehad
    Agarwal, Ravi P.
    Grace, Said R.
    Jonnalagadda, Jagan M.
    FRACTAL AND FRACTIONAL, 2022, 6 (09)
  • [10] Fractional-order Boubaker wavelets method for solving fractional Riccati differential equations
    Rabiei, Kobra
    Razzaghi, Mohsen
    APPLIED NUMERICAL MATHEMATICS, 2021, 168 : 221 - 234