Constraints on Dark Matter Microphysics from the Milky Way Satellite Population

被引:124
|
作者
Nadler, Ethan O. [1 ,2 ]
Gluscevic, Vera [3 ,4 ]
Boddy, Kimberly K. [5 ]
Wechsler, Risa H. [1 ,2 ,6 ]
机构
[1] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[3] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[4] Princeton Univ, Joseph Henry Labs Phys, Jadwin Hall, Princeton, NJ 08544 USA
[5] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[6] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
关键词
cosmology: theory; dark matter; galaxies: halos; methods: numerical; MASS; HALOES; GALAXY;
D O I
10.3847/2041-8213/ab1eb2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Alternatives to the cold, collisionless dark matter (DM) paradigm in which DM behaves as a collisional fluid generically suppress small-scale structure. Herein we use the observed population of Milky Way (MW) satellite galaxies to constrain the collisional nature of DM, focusing on DM-baryon scattering. We first derive conservative analytic upper limits on the velocity-independent DM-baryon scattering cross section by translating the upper bound on the lowest mass of halos inferred to host satellites into a characteristic cutoff scale in the linear matter power spectrum. We then confirm and improve these results through a detailed probabilistic inference of the MW satellite population that marginalizes over relevant astrophysical uncertainties. This yields 95% confidence upper limits on the DM-baryon scattering cross section of 6 x 10(-30) cm(2) (10(-27) cm(2)) for DM particle masses m(chi) of 10 keV (10 GeV); these limits scale as M-chi(1/4) for m(chi) << 1 GeV and m(chi) for m(chi) >> 1 GeV. This analysis improves upon cosmological bounds derived from cosmic-microwave-background anisotropy measurements by more than three orders of magnitude over a wide range of DM masses, excluding regions of parameter space previously unexplored by other methods, including direct-detection experiments. Our work reveals a mapping between DM-baryon scattering and other alternative DM models, and we discuss the implications of our results for warm and fuzzy DM scenarios.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Constraints on Dark Matter Microphysics from the Milky Way Satellite Population (vol 878, 32, 2019)
    Nadler, Ethan O.
    Gluscevic, Vera
    Boddy, Kimberly K.
    Wechsler, Risa H.
    ASTROPHYSICAL JOURNAL LETTERS, 2020, 897 (02)
  • [2] Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies
    Nadler, E. O.
    Drlica-Wagner, A.
    Bechtol, K.
    Mau, S.
    Wechsler, R. H.
    Gluscevic, V
    Boddy, K.
    Pace, A. B.
    Li, T. S.
    McNanna, M.
    Riley, A. H.
    Garcia-Bellido, J.
    Mao, Y-Y
    Green, G.
    Burke, D. L.
    Peter, A.
    Jain, B.
    Abbott, T. M. C.
    Aguena, M.
    Allam, S.
    Annis, J.
    Avila, S.
    Brooks, D.
    Kind, M. Carrasco
    Carretero, J.
    Costanzi, M.
    da Costa, L. N.
    De Vicente, J.
    Desai, S.
    Diehl, H. T.
    Doel, P.
    Everett, S.
    Evrard, A. E.
    Flaugher, B.
    Frieman, J.
    Gerdes, D. W.
    Gruen, D.
    Gruendl, R. A.
    Gschwend, J.
    Gutierrez, G.
    Hinton, S. R.
    Honscheid, K.
    Huterer, D.
    James, D. J.
    Krause, E.
    Kuehn, K.
    Kuropatkin, N.
    Lahav, O.
    Maia, M. A. G.
    Marshall, J. L.
    PHYSICAL REVIEW LETTERS, 2021, 126 (09)
  • [3] Milky Way Satellite Census. IV. Constraints on Decaying Dark Matter from Observations of Milky Way Satellite Galaxies
    Mau, S.
    Nadler, E. O.
    Wechsler, R. H.
    Drlica-Wagner, A.
    Bechtol, K.
    Green, G.
    Huterer, D.
    Li, T. S.
    Mao, Y-Y
    Martinez-Vazquez, C. E.
    McNanna, M.
    Mutlu-Pakdil, B.
    Pace, A. B.
    Peter, A.
    Riley, A. H.
    Strigari, L.
    Wang, M-Y
    Aguena, M.
    Allam, S.
    Annis, J.
    Bacon, D.
    Bertin, E.
    Bocquet, S.
    Brooks, D.
    Burke, D. L.
    Rosell, A. Carnero
    Kind, M. Carrasco
    Carretero, J.
    Costanzi, M.
    Crocce, M.
    Pereira, M. E. S.
    Davis, T. M.
    De Vicente, J.
    Desai, S.
    Doel, P.
    Ferrero, I
    Flaugher, B.
    Frieman, J.
    Garcia-Bellido, J.
    Gatti, M.
    Giannini, G.
    Gruen, D.
    Gruendl, R. A.
    Gschwend, J.
    Gutierrez, G.
    Hinton, S. R.
    Hollowood, D. L.
    Honscheid, K.
    James, D. J.
    Kuehn, K.
    ASTROPHYSICAL JOURNAL, 2022, 932 (02):
  • [4] Constraints on the properties of warm dark matter using the satellite galaxies of the Milky Way
    Newton, Oliver
    Leo, Matteo
    Cautun, Marius
    Jenkins, Adrian
    Frenk, Carlos S.
    Lovell, Mark R.
    Helly, John C.
    Benson, Andrew J.
    Cole, Shaun
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (08):
  • [5] Mixed warm dark matter constraints using Milky Way satellite galaxy counts
    Tan, Chin Yi
    Dekker, Ariane
    Drlica-Wagner, Alex
    PHYSICAL REVIEW D, 2025, 111 (06)
  • [6] Dark Matter Constraints from a Unified Analysis of Strong Gravitational Lenses and Milky Way Satellite Galaxies
    Nadler, Ethan O.
    Birrer, Simon
    Gilman, Daniel
    Wechsler, Risa H.
    Du, Xiaolong
    Benson, Andrew
    Nierenberg, Anna M.
    Treu, Tommaso
    ASTROPHYSICAL JOURNAL, 2021, 917 (01):
  • [7] Dynamical constraints on the dark matter distribution in the Milky Way
    Pato, Miguel
    Iocco, Fabio
    Bertone, Gianfranco
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (12):
  • [8] How cold is dark matter? Constraints from Milky Way satellites
    Maccio, Andrea V.
    Fontanot, Fabio
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 404 (01) : L16 - L20
  • [9] Constraints on the epoch of dark matter formation from Milky Way satellites
    Das, Subinoy
    Nadler, Ethan O.
    PHYSICAL REVIEW D, 2021, 103 (04)
  • [10] Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope
    Ackermann, M.
    Albert, A.
    Anderson, B.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Bissaldi, E.
    Bloom, E. D.
    Bonamente, E.
    Bouvier, A.
    Brandt, T. J.
    Bregeon, J.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caragiulo, M.
    Caraveo, P. A.
    Cecchi, C.
    Charles, E.
    Chekhtman, A.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, J.
    D'Ammando, F.
    de Angelis, A.
    Dermer, C. D.
    Digel, S. W.
    do Couto e Silva, E.
    Drell, P. S.
    Drlica-Wagner, A.
    Essig, R.
    Favuzzi, C.
    Ferrara, E. C.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giroletti, M.
    Godfrey, G.
    PHYSICAL REVIEW D, 2014, 89 (04):