1,3-Dioxolane: A Strategy to Improve Electrode Interfaces in Lithium Ion and Lithium-Sulfur Batteries

被引:23
|
作者
La Monaca, Andrea [1 ]
De Giorgio, Francesca [1 ]
Soavi, Francesca [1 ]
Tarquini, Gabriele [2 ]
Di Carli, Mariasole [3 ]
Prosini, Pier Paolo [3 ]
Arbizzani, Catia [1 ]
机构
[1] Univ Bologna, Alma Mater Studiorum, Dept Chem Giacomo Ciamician, Via F Selmi 2, I-40126 Bologna, Italy
[2] Univ Roma La Sapienza, Dept Basic & Appl Sci Engn, Via Antonio Scarpa 14-16, I-00161 Rome, Italy
[3] Italian Natl Agcy New Technol Energy & Sustainabl, ENEA, Casaccia Res Ctr, Via Anguillarese 301, I-00123 Rome, Italy
来源
CHEMELECTROCHEM | 2018年 / 5卷 / 09期
关键词
3-dioxolane; lithium/sulfur; LiNi0.5Mn1.5O4; 1,3-dioxolane; electropolymerization; lithium ion; ELECTROCHEMICAL-BEHAVIOR; CHALLENGES; CATHODE; POLYSULFIDE; LIFE;
D O I
10.1002/celc.201701348
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Batteries with increased specific energy will play a crucial role in future electrical energy. Indeed, high specific energy means increased driving ranges in electric vehicles and can also improve the efficient use of the renewable energy. Lithium batteries, including lithium ion batteries (LIBs), with a high specific energy can be achieved with the use of high-potential and/or high specific capacity cathodes. We exploit the ability of 1,3-dioxolane (DOL) to polymerize at voltages higher than 4 V to produce a protective polymer layer in situ on two different cathodes. Specifically, DOL was polymerized on high-voltage LiNi0.5Mn1.5O4, (LNMO) and on high-capacity sulfur electrodes in order to reduce the electrode/electrolyte interface reactivity of these cathode materials and to improve cycling performance.
引用
收藏
页码:1272 / 1278
页数:7
相关论文
共 50 条
  • [1] Highly Stable and Conductive 1,3-Dioxolane/Hydrocarbon Based Electrolyte Solvent for Advanced Lithium-Sulfur Batteries
    Ahmed, Faiz
    Li, Defu
    Liu, Gao
    CHEMELECTROCHEM, 2025,
  • [2] Surface modification mechanism of lithium electrode with 1,3-dioxolane
    Gao, Peng
    Zhu, Yong-Ming
    Zhang, Cui-Fen
    Li, Ning
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2010, 42 (12): : 1927 - 1931
  • [3] A novel strategy to improve the electrochemical properties of in-situ polymerized 1,3-dioxolane electrolyte in lithium metal batteries
    Xi, Kang
    Wang, Yongdong
    Li, Chengzhe
    Lei, Yue
    Xu, Xin
    Wei, Lai
    Gao, Yunfang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 679 : 1277 - 1287
  • [5] 1,3-dioxolane pretreatment to improve the interfacial characteristics of a lithium anode
    Ding Fei
    Liu Yuwen
    Hu Xinguo
    RARE METALS, 2006, 25 (04) : 297 - 302
  • [6] 1,3-dioxolane pretreatment to improve the interfacial characteristics of a lithium anode
    DING Fei LIU Yuwen HU Xinguo Department of Applied ChemistryHarbin Institute of TechnologyHarbin China Research CentreJJJ Battery Co LtdJiangmen China
    北京科技大学学报, 2006, (08) : 769 - 769
  • [7] SOLUTIONS OF LIASF6 IN 1,3-DIOXOLANE FOR SECONDARY LITHIUM BATTERIES
    GOFER, Y
    BENZION, M
    AURBACH, D
    JOURNAL OF POWER SOURCES, 1992, 39 (02) : 163 - 178
  • [8] Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium-sulfur battery
    Chang, DR
    Lee, SH
    Kim, SW
    Kim, HT
    JOURNAL OF POWER SOURCES, 2002, 112 (02) : 452 - 460
  • [9] SURFACE-CHEMISTRY OF LITHIUM IN 1,3-DIOXOLANE
    GOFER, Y
    ELY, YE
    AURBACH, D
    ELECTROCHIMICA ACTA, 1992, 37 (10) : 1897 - 1899
  • [10] Effects of 1,3-dioxolane pretreatment on lithium electrodes
    Ding, F
    Liu, YW
    Hu, XG
    Zhang, CF
    JOURNAL OF RARE EARTHS, 2005, 23 : 204 - 208