Vehicle Re-Identification by Deep Hidden Multi-View Inference

被引:100
|
作者
Zhou, Yi [1 ]
Liu, Li [1 ]
Shao, Ling [1 ]
机构
[1] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
关键词
Vehicle re-identification; multi-view; spatially concatenated ConvNet; CNN-LSTM bi-directional loop; PERSON REIDENTIFICATION; RECOGNITION; ROAD;
D O I
10.1109/TIP.2018.2819820
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vehicle re-identification (re-ID) is an area that has received far less attention in the computer vision community than the prevalent person re-ID. Possible reasons for this slow progress are the lack of appropriate research data and the special 3D structure of a vehicle. Previous works have generally focused on some specific views (e.g., front); but, these methods are less effective in realistic scenarios, where vehicles usually appear in arbitrary views to cameras. In this paper, we focus on the uncertainty of vehicle viewpoint in re-ID, proposing two end-to-end deep architectures: the Spatially Concatenated ConvNet and convolutional neural network (CNN)-LSTM bi-directional loop. Our models exploit the great advantages of the CNN and long short-term memory (LSTM) to learn transformations across different viewpoints of vehicles. Thus, a multi-view vehicle representation containing all viewpoints' information can be inferred from the only one input view, and then used for learning to measure distance. To verify our models, we also introduce a Toy Car RE-ID data set with images from multiple viewpoints of 200 vehicles. We evaluate our proposed methods on the Toy Car RE-ID data set and the public Multi-View Car, VehicleID, and VeRi data sets. Experimental results illustrate that our models achieve consistent improvements over the state-of-the-art vehicle re-ID approaches.
引用
收藏
页码:3275 / 3287
页数:13
相关论文
共 50 条
  • [1] MULTI-VIEW LEARNING FOR VEHICLE RE-IDENTIFICATION
    Lin, Weipeng
    Li, Yidong
    Yang, Xiaoliang
    Peng, Peixi
    Xing, Junliang
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 832 - 837
  • [2] Viewpoint-aware Attentive Multi-view Inference for Vehicle Re-identification
    Zhou, Yi
    Shao, Ling
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : CP99 - CP99
  • [3] MULTI-VIEW VEHICLE IMAGE GENERATION NETWORK FOR VEHICLE RE-IDENTIFICATION
    Xun, Yizhe
    Liu, Jia
    Islam, Sardar M. N.
    Chen, Yuanfang
    2024 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS 2024, 2024, : 517 - 522
  • [4] Multi-View Spatial Attention Embedding for Vehicle Re-Identification
    Teng, Shangzhi
    Zhang, Shiliang
    Huang, Qingming
    Sebe, Nicu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (02) : 816 - 827
  • [5] Deep Multi-View Feature Learning for Person Re-Identification
    Tao, Dapeng
    Guo, Yanan
    Yu, Baosheng
    Pang, Jianxin
    Yu, Zhengtao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (10) : 2657 - 2666
  • [6] Large margin metric learning for multi-view vehicle re-identification
    Zhang, Shilin
    Lin, Cong
    Ma, Siming
    Neurocomputing, 2021, 447 : 118 - 128
  • [7] Large margin metric learning for multi-view vehicle re-identification
    Zhang, Shilin
    Lin, Cong
    Ma, Siming
    NEUROCOMPUTING, 2021, 447 : 118 - 128
  • [8] Visual Cognition Inspired Vehicle Re-identification via Correlative Sparse Ranking with Multi-view Deep Features
    Sun, Dengdi
    Liu, Lidan
    Zheng, Aihua
    Jiang, Bo
    Luo, Bin
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 54 - 63
  • [9] Multi-view feature fusion for person re-identification
    Xu, Yinsong
    Jiang, Zhuqing
    Men, Aidong
    Wang, Haiying
    Luo, Haiyong
    KNOWLEDGE-BASED SYSTEMS, 2021, 229
  • [10] MULTI-VIEW IMPLICIT TRANSFER FOR PERSON RE-IDENTIFICATION
    Xu, Wei
    Li, Yijun
    Gong, Chen
    Yang, Lie
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 1151 - 1155