Regression calibration method for correcting measurement-error bias in nutritional epidemiology

被引:0
|
作者
Spiegelman, D
McDermott, A
Rosner, B
机构
[1] HARVARD UNIV, SCH PUBL HLTH, DEPT BIOSTAT, BOSTON, MA 02115 USA
[2] BRIGHAM & WOMENS HOSP, CHANNING LAB, BOSTON, MA 02115 USA
[3] NATL UNIV IRELAND UNIV COLL GALWAY, DEPT MATH, GALWAY, IRELAND
来源
关键词
measurement error; logistic repression; proportional hazards model; linear regression; validation study; reliability study; Nurses' Health Study; Massachusetts Women's Health Study; women; statistical analyses; regression calibration; Cox proportional hazards model;
D O I
暂无
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Regression calibration is a statistical method for adjusting point and interval estimates of effect obtained from regression models commonly used in epidemiology for bias due to measurement error in assessing nutrients or other variables. Previous work developed regression calibration for use in estimating odds ratios from logistic regression. We extend this here to estimating incidence rate ratios from Cox proportional hazards models and regression slopes from linear-regression models. Regression calibration is appropriate when a gold standard is available in a validation study and a linear measurement error with constant variance applies or when replicate measurements are available in a reliability study and linear random within-person error can be assumed. In this paper, the method is illustrated by correction of rate ratios describing the relations between the incidence of breast cancer and dietary intakes of vitamin A, alcohol, and total energy in the Nurses' Health Study. An example using linear regression is based on estimation of the relation between ultradistal radius bone density and dietary intakes of caffeine, calcium, and total energy in the Massachusetts Women's Health Study. Software implementing these methods uses SAS macros.
引用
收藏
页码:1179 / 1186
页数:8
相关论文
共 50 条
  • [1] THE MANY USES OF THE REGRESSION CALIBRATION METHOD FOR CORRECTION OF MEASUREMENT ERROR BIAS IN OCCUPATIONAL AND NUTRITIONAL EPIDEMIOLOGY
    SPIEGELMAN, D
    KIPNIS, V
    ROSNER, B
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 1995, 141 (11) : S59 - S59
  • [2] MERC: AN R PACKAGE FOR CORRECTING MEASUREMENT ERROR BIAS BASED ON REGRESSION CALIBRATION METHOD
    Liu, X.
    Zhou, X.
    VALUE IN HEALTH, 2023, 26 (06) : S288 - S288
  • [3] Correcting for omitted-variables and measurement-error bias in regression with an application to the effect of lead on IQ
    Marais, ML
    Wecker, WE
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (442) : 494 - 505
  • [4] ON A METHOD FOR ADJUSTING LEAST-SQUARES REGRESSION-COEFFICIENTS FOR MEASUREMENT-ERROR BIAS
    WARNER, SL
    WESTERN ECONOMIC JOURNAL, 1965, 3 (03): : 317 - 318
  • [5] Homogeneous-material-based calibration method for correcting laser-induced breakdown spectroscopy measurement-error bias in the case of dust pollution
    Zhao, Yang
    Zhang, Lei
    Yin, Wangbao
    Hou, Jiajia
    Wang, Zhe
    Hou, Zongyu
    Ma, Weiguang
    Dong, Lei
    Yang, Guangye
    Xiao, Liantuan
    Jia, Suotang
    APPLIED OPTICS, 2017, 56 (35) : 9644 - 9648
  • [6] Correcting for Omitted-Variable and Measurement-Error Bias in Autoregressive Model Estimation with Panel Data
    P. A.V. B. Swamy
    I-Lok Chang
    Jatinder S. Mehta
    George S. Tavlas
    Computational Economics, 2003, 22 (2-3) : 225 - 253
  • [7] A MEASUREMENT-ERROR MODEL FOR BINARY AND ORDINAL REGRESSION
    TOSTESON, TD
    STEFANSKI, LA
    SCHAFER, DW
    STATISTICS IN MEDICINE, 1989, 8 (09) : 1139 - 1147
  • [8] A model for correcting regression dilution bias due to measurement error in dietary intake measurements
    Li, L
    Sun, P
    Nicholson, L
    Dwyer, KM
    Dwyer, JH
    AMERICAN JOURNAL OF CLINICAL NUTRITION, 1997, 65 (04): : 1329 - 1329
  • [9] Correcting for multivariate measurement error by regression calibration in meta-analyses of epidemiological studies
    Wood, A. M.
    White, I. R.
    Thompson, S. G.
    Kostis, J. B.
    Wilson, A. C.
    Wu, K.
    Benderly, M.
    Goldbourt, U.
    Willeit, J.
    Kiechl, S.
    Yarnell, J. W. G.
    Sweetnarn, P. M.
    Elwood, P. C.
    Cushman, M.
    Tracy, R. P.
    Tybjaerg-Hansen, A.
    Haverkate, F.
    Thompson, S. G.
    Lee, A. J.
    Smith, F. B.
    Salomaa, V.
    Harald, K.
    Rasi, V.
    Jousilahti, P.
    Pekkanen, J.
    D'Agostino, R.
    Wilson, P. W. F.
    Tofler, G.
    Levy, D.
    Marchioli, R.
    Valagussa, F.
    Rosengren, A.
    Lappas, G.
    Eriksson, H.
    Cremer, P.
    Nagel, D.
    Curb, J. D.
    Rodriguez, B.
    Yano, K.
    Salonen, J. T.
    Nyyssoenen, K.
    Tuomainen, T. -P.
    Hedblad, B.
    Engstroem, G.
    Berglund, G.
    Loewel, H.
    Hense, H. W.
    Meade, T. W.
    Cooper, J. A.
    De Stavola, B.
    STATISTICS IN MEDICINE, 2009, 28 (07) : 1067 - 1092
  • [10] A bias correction regression calibration approach in generalized linear mixed measurement error models
    Wang, N
    Lin, XH
    Guttierrez, RG
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1999, 28 (01) : 217 - 232