On spanning tree packings of highly edge connected graphs

被引:9
|
作者
Lehner, Florian [1 ]
机构
[1] Graz Univ Technol, Inst Geometr, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Infinite graph theory; End faithful spanning tree; Spanning tree packing; Hamiltonian cycle; LOCALLY FINITE GRAPHS; INFINITE CYCLES; HAMILTON CYCLES; SPACE;
D O I
10.1016/j.jctb.2013.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a refinement of the tree packing theorem by Tutte/Nash-Williams for finite graphs. This result is used to obtain a similar result for end faithful spanning tree packings in certain infinite graphs and consequently to establish a sufficient Hamiltonicity condition for the line graphs of such graphs. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:93 / 126
页数:34
相关论文
共 50 条
  • [1] Highly Connected Graphs Have Highly Connected Spanning Bipartite Subgraphs
    Yuster, Raphael
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [2] Decomposing highly edge-connected graphs into homomorphic copies of a fixed tree
    Merker, Martin
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 : 91 - 108
  • [3] IMMERSIONS IN HIGHLY EDGE CONNECTED GRAPHS
    Marx, Daniel
    Wollan, Paul
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (01) : 503 - 520
  • [4] Packing spanning trees in highly essentially connected graphs
    Lai, Hong-Jian
    Li, Jiaao
    [J]. DISCRETE MATHEMATICS, 2019, 342 (01) : 1 - 9
  • [5] Enumerating Highly-Edge-Connected Spanning Subgraphs
    Yamanaka, Katsuhisa
    Matsui, Yasuko
    Nakano, Shin-ichi
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2019, E102A (09) : 1002 - 1006
  • [6] Spanning Eulerian Subgraphs of 2-Edge-Connected Graphs
    Xiangwen Li
    Chunxiang Wang
    Qiong Fan
    Zhaohong Niu
    Liming Xiong
    [J]. Graphs and Combinatorics, 2013, 29 : 275 - 280
  • [7] Spanning Even Subgraphs of 3-Edge-Connected Graphs
    Jackson, Bill
    Yoshimoto, Kiyoshi
    [J]. JOURNAL OF GRAPH THEORY, 2009, 62 (01) : 37 - 47
  • [8] Spanning trails in essentially 4-edge-connected graphs
    Xu, Jinquan
    Chen, Zhi-Hong
    Lai, Hong-Jian
    Zhang, Meng
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 162 : 306 - 313
  • [9] Distributed Maintenance of a Spanning Tree of k-Connected Graphs
    Hamid, Brahim
    Rouland, Quentin
    Jaskolkat, Jason
    [J]. 2019 IEEE 24TH PACIFIC RIM INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING (PRDC 2019), 2019, : 217 - 226
  • [10] Spanning Eulerian Subgraphs of 2-Edge-Connected Graphs
    Li, Xiangwen
    Wang, Chunxiang
    Fan, Qiong
    Niu, Zhaohong
    Xiong, Liming
    [J]. GRAPHS AND COMBINATORICS, 2013, 29 (02) : 275 - 280