Online estimation using dynamic flux balance model and multiparametric programming

被引:1
|
作者
Shen, Xin [1 ]
Budman, Hector [1 ]
机构
[1] Univ Waterloo, Dept Chem Engn, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Set membership estimation; Weighted primal-dual method; Multiparametric nonlinear programming; Dynamic flux balance models; Multiple solutions; SOFT SENSOR;
D O I
10.1016/j.compchemeng.2022.107872
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An approach is proposed for online estimation of bounds on metabolite's concentrations based on limited measurements and Dynamic Flux Balance Models (DFBM) which use linear programming (LP) to model the evolution of metabolites with time. A Weighted primal-dual method to address the multiplicity of solutions of DFBMs is combined with multiparametric nonlinear programming (mpNLP) for set membership estimation. The set membership estimation (SME) approach is used to propagate the uncertainty onto metabolites' concentrations over time. By only measuring biomass concentration and culture volume, bounds of metabolites' concentrations can be estimated online by SME during the fermentation. The proposed algorithm is applied to batch and fed-batch fermentation of E. coli. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Model-Based Parameter Estimation for Fault Detection Using Multiparametric Programming
    Mid, Ernie Che
    Dua, Vivek
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (28) : 8000 - 8015
  • [2] ESTIMATION OF PHOSPHORUS FLUX IN A STRATIFIED ESTUARY USING A MASS BALANCE MODEL
    Yuk, Jin-Hee
    Aoki, Shin-Ichi
    COASTAL ENGINEERING JOURNAL, 2010, 52 (03) : 195 - 213
  • [3] Nonlinear programming reformulation of dynamic flux balance analysis models
    de Oliveira, Rafael D.
    Le Roux, Galo A. C.
    Mahadevan, Radhakrishnan
    COMPUTERS & CHEMICAL ENGINEERING, 2023, 170
  • [4] Set Membership Estimation with Dynamic Flux Balance Models
    Shen, Xin
    Budman, Hector
    PROCESSES, 2021, 9 (10)
  • [5] Online Dynamic Programming
    Rahmanian, Holakou
    Warmuth, Manfred K.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [6] Dynamic State Estimation using Quadratic Programming
    Xinjilefu, X.
    Feng, Siyuan
    Atkeson, Christopher G.
    2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 989 - 994
  • [7] Motion estimation using modified dynamic programming
    Mozerov, M
    Kober, V
    Tchernykh, A
    Choi, TS
    OPTICAL ENGINEERING, 2002, 41 (10) : 2592 - 2598
  • [8] A dynamic model of growth phase of bio-conversion of methane to polyhydroxybutyrate using dynamic flux balance analysis
    Nasershariat, Mohadeseh
    Pishvaie, Mahmoud Reza
    Boozarjomehry, Ramin Bozorgmehry
    Waldherr, Steffen
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2024, 47 (04) : 463 - 474
  • [9] A dynamic model of growth phase of bio-conversion of methane to polyhydroxybutyrate using dynamic flux balance analysis
    Mohadeseh Nasershariat
    Mahmoud Reza Pishvaie
    Ramin Bozorgmehry Boozarjomehry
    Steffen Waldherr
    Bioprocess and Biosystems Engineering, 2024, 47 : 463 - 474
  • [10] Dynamic Programming Approach to Load Estimation Using Optimal Sensor Placement and Model Reduction
    Gupta, Deepak K.
    Dhingra, Anoop K.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2018, 15 (08)