On the excursions of two-dimensional random walk and Wiener process

被引:0
|
作者
Csáki, E [1 ]
Földes, A [1 ]
Révész, P [1 ]
Shi, Z [1 ]
机构
[1] Vienna Tech Univ, Inst Stat & Wahrscheinlichkeitstheorie, A-1040 Vienna, Austria
来源
RANDOM WALKS | 1999年 / 9卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a simple symmetric random walk on the plane. Its portion between two consecutive returns to zero are called excursions. We study the sum of the excursions when the two largest ones are eliminated from the sum. Similar investigations are carried out for two-dimensional Wiener process.
引用
收藏
页码:43 / 58
页数:16
相关论文
共 50 条
  • [41] GEOMETRIC STRUCTURES OF LATE POINTS OF A TWO-DIMENSIONAL SIMPLE RANDOM WALK
    Okada, Izumi
    ANNALS OF PROBABILITY, 2019, 47 (05): : 2869 - 2893
  • [42] Two-dimensional limit theorem for a critical catalytic branching random walk
    Topchii, V
    Vatutin, V
    MATHEMATICS AND COMPUTER SCIENCE III: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2004, : 387 - 395
  • [43] Implementation of a spatial two-dimensional quantum random walk with tunable decoherence
    Svozilik, J.
    Leon-Montiel, R. de J.
    Torres, J. P.
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [44] Hitting time of a half-line by two-dimensional random walk
    Fukai, Y
    PROBABILITY THEORY AND RELATED FIELDS, 2004, 128 (03) : 323 - 346
  • [45] CHAOS AND TWO-DIMENSIONAL RANDOM-WALK IN PERIODIC AND QUASIPERIODIC FIELDS
    ZASLAVSKY, GM
    SAGDEEV, RZ
    CHAIKOVSKY, DK
    CHERNIKOV, AA
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1989, 95 (05): : 1723 - 1733
  • [46] Distribution of the area enclosed by a two-dimensional random walk in a disordered medium
    Samokhin, K.V.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (3 pt A):
  • [47] A LIMIT-THEOREM FOR TWO-DIMENSIONAL CONDITIONED RANDOM-WALK
    SHIMURA, M
    NAGOYA MATHEMATICAL JOURNAL, 1984, 95 (SEP) : 105 - 116
  • [48] Magnetic field line random walk in two-dimensional dynamical turbulence
    Wang, J. F.
    Qin, G.
    Ma, Q. M.
    Song, T.
    Yuan, S. B.
    PHYSICS OF PLASMAS, 2017, 24 (08)
  • [49] Genome as a two-dimensional walk
    Larionov, SA
    Loskutov, AY
    Ryadchenko, EV
    DOKLADY PHYSICS, 2005, 50 (12) : 634 - 638
  • [50] Genome as a two-dimensional walk
    S. A. Larionov
    A. Yu. Loskutov
    E. V. Ryadchenko
    Doklady Physics, 2005, 50 : 634 - 638