A simulation of gas transport in polymeric membranes. Application to heterogeneous aging

被引:0
|
作者
Dolveck, JY [1 ]
Dole, P [1 ]
Joly, C [1 ]
机构
[1] ETUD MAT PLAST & BIOMAT LAB,F-69622 VILLEURBANNE,FRANCE
关键词
stimulation; heterogeneous aging; oxidation profile; crosslinking; diffusion properties;
D O I
10.1002/(SICI)1097-4628(19971017)66:3<435::AID-APP3>3.0.CO;2-Q
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A simplified mechanism of polymer aging has been proposed to simulate the effect of diffusion on degradation processes. Simple observations have been made on different events simulated using a modelization of the diffusion of low mass species: (1) the bulk oxidation rate, in the case of heterogeneous oxidation, is proportional to the square root of the initiation rate (formation of radicals). (2) The relative oxidation profile (relative to the surface oxidation) as a function of aging time is not constant. (3) The initial concentration of oxygen has, in some cases, a large influence on the apparent bulk oxidation rate during all the degradation processes. (4) The same observation is made for model samples stored in air and aged in inert atmosphere. (5) When heterogeneous oxidation occurs in samples containing antioxidant additives, the concentration of antioxidant has an effect on the induction period and on the bulk oxidation rate (this is not the case for homogeneous oxidation). (6) When heterogeneous oxidation occurs, the effect of antioxidant mobility can be practically neglected when D-oxygen/D-antioxidant (D = diffusion coefficient) varies from to 100 to 1. (7)The time required to reach a pseudostationary state (corresponding to the egality of oxidation rate and oxygen diffusion rate) can be interpreted by a simple induction period (antioxidant consumption and/or hydroperoxide accumulation). (C) 1997 John Wiley & Sons, Inc.
引用
收藏
页码:435 / 444
页数:10
相关论文
共 50 条
  • [1] Group contribution modeling of gas transport in polymeric membranes.
    Laciak, DV
    Robeson, LM
    Smith, CD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 214 : 107 - PMSE
  • [2] Computer simulation of fluid penetration of microporous polymeric membranes.
    Miller, A
    Schwartz, P
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U329 - U329
  • [3] A competitive transport across polymeric membranes. Study of complexation and separation of ions
    Smail, Fatima
    Arous, Omar
    Amara, Mourad
    Kerdjoudj, Hacene
    COMPTES RENDUS CHIMIE, 2013, 16 (06) : 605 - 612
  • [4] Gas Separation with Membranes.
    Overmann, L.
    Staude, E.
    Erdoel und Kohle - Erdgas - Petrochemie. Vereinigt mit Brennstoff-Chemie, 1987, 40 (10): : 427 - 431
  • [5] Gas transport properties of novel poly(arylene ether) membranes.
    Xu, ZK
    Springer, J
    Banerjee, S
    Maier, G
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 222 : U370 - U371
  • [6] Development of a new gas sensor for binary mixtures based on the permselectivity of polymeric membranes. Application to oxygen/nitrogen mixture
    Rego, R
    Caetanoc, N
    Vale, R
    Mendes, A
    JOURNAL OF MEMBRANE SCIENCE, 2004, 244 (1-2) : 35 - 44
  • [7] TUNNEL WATERPROOFING USING POLYMERIC MEMBRANES.
    Caputo, Marc
    Huez, Hans-Peter
    1987, 2 (01): : 83 - 88
  • [8] Physical aging of glassy perfluoropolymers in thin film composite membranes. Part I. Gas transport properties
    Yavari, Milad
    Le, Tho
    Lin, Haiqing
    JOURNAL OF MEMBRANE SCIENCE, 2017, 525 : 387 - 398
  • [9] TRANSPORT STUDIES WITH MODEL MEMBRANES.
    Siddiqi, Fasih A.
    Alvi, Naved I.
    Khan, Saud A.
    Colloids and surfaces, 1988, 13 (1-2): : 57 - 73
  • [10] EVALUATION OF CHEMICAL RESISTANCE OF HETEROGENEOUS MEMBRANES.
    Klimova, Z.V.
    Saldadze, G.K.
    Journal of applied chemistry of the USSR, 1985, 58 (3 pt 1): : 469 - 473