On nonparametric estimation of 2-D smooth spectra

被引:3
|
作者
Sandgren, Niclas [1 ]
Stoica, Petre [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Syst & Control Div, SE-75105 Uppsala, Sweden
关键词
nonparametric two-dimensional (2-D) spectral estimation; spectral smoothing; thresholding;
D O I
10.1109/LSP.2006.876320
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the problem of smoothed nonparametric estimation of two-dimensional (2-D) spectra. In the one-dimensional (1-D) scenario, several methods have been developed in the past for the computation of nonparametric spectral estimates with lower variance than that of the standard periodogram. Some of these techniques can also be extended to the 2-D case. However, such methods usually require a careful selection of certain design parameters, which can be hard to make. The spectral estimator proposed here is based on cepstrum thresholding and is shown to have significantly lower variance than the standard 2-D periodogram. Moreover, the thresholding is performed in a simple and practically automatic manner without the requirement of extensive prior knowledge about the signal of interest.
引用
收藏
页码:632 / 635
页数:4
相关论文
共 50 条
  • [1] Cepstrum thresholding scheme for nonparametric estimation of smooth spectra
    Stoica, Petre
    Sandgren, Niclas
    2006 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, VOLS 1-5, 2006, : 874 - +
  • [2] SMOOTH 2-D FREQUENCY ESTIMATION USING COVARIANCE FITTING
    Sward, Johan
    Brynolfsson, Johan
    Jakobsson, Andreas
    Hansson-Sandsten, Maria
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 496 - 500
  • [3] Nonparametric Estimation of Time-Varying Systems Using 2-D Regularization
    Csurcsia, Peter Zoltan
    Lataire, John
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (05) : 1259 - 1270
  • [4] Maximum-Likelihood Nonparametric Estimation of Smooth Spectra From Irregularly Sampled Data
    Stoica, Petre
    Babu, Prabhu
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (12) : 5746 - 5758
  • [5] NONPARAMETRIC ESTIMATION OF A SMOOTH REGRESSION FUNCTION
    CLARK, RM
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 107 - 113
  • [6] 2-D sinusoidal amplitude estimation with application to 2-D system identification
    Li, HB
    Sun, W
    Stoica, P
    Li, J
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 1921 - 1924
  • [7] 2-D DOA estimation with no failure
    Tayem, N
    Kwon, HM
    Lee, YH
    VTC2005-FALL: 2005 IEEE 62ND VEHICULAR TECHNOLOGY CONFERENCE, 1-4, PROCEEDINGS, 2005, : 2206 - 2210
  • [8] How to analyze 2-D nebular spectra
    Gesicki, K
    Acker, A
    Zijlstra, A
    PLANETARY NEBULAE, 1997, (180): : 227 - 227
  • [9] Numerical modeling of 2-D smooth crack growth
    Mogilevskaya, SG
    INTERNATIONAL JOURNAL OF FRACTURE, 1997, 87 (04) : 389 - 405
  • [10] Nonparametric estimation of piecewise smooth regression functions
    Kohler, M
    STATISTICS & PROBABILITY LETTERS, 1999, 43 (01) : 49 - 55