The tree property and the continuum function below ℵω

被引:2
|
作者
Honzik, Radek [1 ]
Stejskalova, Sarka [1 ]
机构
[1] Charles Univ Prague, Dept Log, Celetna 20, Prague 11642 1, Czech Republic
基金
奥地利科学基金会;
关键词
D O I
10.1002/malq.201600028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that a regular cardinal kappa, kappa > aleph(0), has the tree property if there are no kappa-Aronszajn trees; we say that has the weak tree property if there are no special kappa-Aronszajn trees. Starting with infinitely many weakly compact cardinals, we show that the tree property at every even cardinal aleph(2n,) 0 < n <omega, is consistent with an arbitrary continuum function below aleph(omega) which satisfies 2(aleph 2n) > aleph(2n+1), n < omega. Next, starting with infinitely many Mahlo cardinals, we show that the weak tree property at every cardinal aleph(n), 1 < n < omega, is consistent with an arbitrary continuum function below aleph(omega) which satisfies 2(aleph n) > aleph(n+1), n < omega. Thus the tree property has no provable effect on the continuum function below aleph(omega) except for the trivial requirement that the tree property at kappa(++) implies 2(kappa)> kappa(+) for every infinite kappa. (C) 2018 WILEY- VCHVerlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:89 / 102
页数:14
相关论文
共 50 条