The Efficiency of Hybrid Intelligent Models in Predicting Fiber-Reinforced Polymer Concrete Interfacial-Bond Strength

被引:14
|
作者
Barkhordari, Mohammad Sadegh [1 ]
Armaghani, Danial Jahed [2 ]
Sabri, Mohanad Muayad Sabri [3 ]
Ulrikh, Dmitrii Vladimirovich [2 ]
Ahmad, Mahmood [4 ]
机构
[1] Amirkabir Univ Technol, Dept Civil & Environm Engn, Tehran 1591634311, Iran
[2] South Ural State Univ, Dept Urban Planning Engn Networks & Syst, Inst Architecture & Construct, 76 Lenin Prospect, Chelyabinsk 454080, Russia
[3] Peter Great St Petersburg Polytech Univ, St Petersburg 195251, Russia
[4] Univ Engn & Technol Peshawar, Dept Civil Engn, Bannu Campus, Bannu 28100, Pakistan
关键词
fiber-reinforced polymer; interfacial bond; hybrid algorithm; neural network; machine learning; CFRP; BEHAVIOR; SHEAR; COLUMNS; SYSTEMS; BEAMS;
D O I
10.3390/ma15093019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fiber-reinforced polymer (FRP) has several benefits, in addition to excellent tensile strength and low self-weight, including corrosion resistance, high durability, and easy construction, making it among the most optimum options for concrete structure restoration. The bond behavior of the FRP-concrete (FRPC) interface, on the other hand, is extremely intricate, making the bond strength challenging to estimate. As a result, a robust modeling framework is necessary. In this paper, data-driven hybrid models are developed by combining state-of-the-art population-based algorithms (bald eagle search (BES), dynamic fitness distance balance-manta ray foraging optimization (dFDB-MRFO), RUNge Kutta optimizer (RUN)) and artificial neural networks (ANN) named "BES-ANN", "dFDB-MRFO -ANN", and "RUN-ANN" to estimate the FRPC interfacial-bond strength accurately. The efficacy of these models in predicting bond strength is examined using an extensive database of 969 experimental samples. Compared to the BES-ANN and dFDB-MRFO models, the RUN-ANN model better estimates the interfacial-bond strength. In addition, the SHapley Additive Explanations (SHAP) approach is used to help interpret the best model and examine how the features influence the model's outcome. Among the studied hybrid models, the RUN-ANN algorithm is the most accurate model with the highest coefficient of determination (R-2 = 92%), least mean absolute error (0.078), and least coefficient of variation (18.6%). The RUN-ANN algorithm also outperformed mechanics-based models. Based on SHAP and sensitivity analysis method, the FRP bond length and width contribute more to the final prediction results.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Comparative Analysis of Machine Learning Models for Predicting Interfacial Bond Strength of Fiber-Reinforced Polymer-Concrete
    Kovacevic, Miljan
    Hadzima-Nyarko, Marijana
    Petronijevic, Predrag
    Vasiljevic, Tatijana
    Radomirovic, Miroslav
    COMPUTATION, 2025, 13 (01)
  • [2] A hybrid machine learning approach for predicting fiber-reinforced polymer-concrete interface bond strength
    Wahab, Sarmed
    Salami, Babatunde Abiodun
    Danish, Hassan
    Nisar, Saad
    Alateah, Ali H.
    Alsubeai, Ali
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [3] Hyperparameter optimization for interfacial bond strength prediction between fiber-reinforced polymer and concrete
    Kong, Qingzhao
    He, Chang
    Liao, Lijia
    Xu, Jia
    Yuan, Cheng
    STRUCTURES, 2023, 51 : 573 - 601
  • [4] Predicting the Bond Strength Between Concrete and Glass Fiber-Reinforced Polymer Bars Using Soft Computing Models
    Saeed Farahi Shahri
    Seyed Roohollah Mousavi
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2023, 47 : 3507 - 3522
  • [5] Predicting the Bond Strength Between Concrete and Glass Fiber-Reinforced Polymer Bars Using Soft Computing Models
    Shahri, Saeed Farahi
    Mousavi, Seyed Roohollah
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2023, 47 (06) : 3507 - 3522
  • [6] Bond strength between fiber-reinforced polymer laminates and concrete
    Kanakubo, T
    Furuta, T
    Fukuyama, H
    FIBRE-REINFORCEMENT POLYMER: REINFORCEMENT FOR CONCRETE STRUCTURES, VOLS 1 AND 2, PROCEEDINGS, 2003, : 133 - 142
  • [7] Effect of contact pressure on bond strength of fiber-reinforced polymer to concrete
    Xiong, GJ
    Ma, X
    Ji, Z
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2006, 10 (03) : 275 - 278
  • [8] Bond of fiber-reinforced polymer laminates to concrete
    De Lorenzis, L
    Miller, B
    Nanni, A
    ACI MATERIALS JOURNAL, 2001, 98 (03) : 256 - 264
  • [9] Ultimate Strength of Reinforced Concrete Beams Retrofitted with Hybrid Bonded Fiber-Reinforced Polymer
    Wu, Yu-Fei
    Yan, Jun-Hui
    Zhou, Ying-Wu
    Xiao, Yan
    ACI STRUCTURAL JOURNAL, 2010, 107 (04) : 451 - 460
  • [10] Interfacial bond strength of glass fiber reinforced polymer bars in high-strength concrete
    Lee, J. -Y.
    Kim, T. -Y.
    Kim, T. J.
    Yi, C. -K.
    Park, J. -S.
    You, Y. -C.
    Park, Y. -H.
    COMPOSITES PART B-ENGINEERING, 2008, 39 (02) : 258 - 270