Purcell effect in one-dimensional photonic quasicrystals

被引:5
|
作者
Morozov, K. M. [1 ]
Ivanov, K. A. [2 ]
Gubaydullin, A. R. [1 ,2 ]
Kaliteevski, M. A. [1 ,2 ,3 ]
机构
[1] St Petersburg Acad Univ, St Petersburg 194021, Russia
[2] ITMO Univ, St Petersburg 197101, Russia
[3] Ioffe Inst, St Petersburg 194021, Russia
基金
俄罗斯科学基金会;
关键词
ELECTROMAGNETIC-FIELD; SPONTANEOUS EMISSION; SCATTERING MATRIX; UNIT CELLS; QUANTIZATION; FORMALISM; BANDGAPS;
D O I
10.1134/S0030400X17020199
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The change in probability of spontaneous emission for emitter placed in one-dimensional photonic quasicrystal (optical Fibonacci lattice) was examined. When the dipole is placed in Fibonacci lattice two different scenarios can be expected: enhancing (if frequency and direction of the dipole emission correspond to optical eigenmode of structure, and position corresponds to maximum value of modes electric field profile) or suppression (in case of photonic band gap) of spontaneous emission rate. Fact that both effects are expressed in quasicrystals less than in the Bragg reflectors and in the microcavities was demonstrated.
引用
收藏
页码:235 / 242
页数:8
相关论文
共 50 条
  • [1] Purcell effect in one-dimensional photonic quasicrystals
    K. M. Morozov
    K. A. Ivanov
    A. R. Gubaydullin
    M. A. Kaliteevski
    [J]. Optics and Spectroscopy, 2017, 122 : 235 - 242
  • [2] Purcell effect in disordered one-dimensional photonic crystals
    Gubaydullin, A. R.
    Ivanov, K. A.
    Nikolaev, V. V.
    Kaliteevski, M. A.
    [J]. SEMICONDUCTORS, 2017, 51 (07) : 947 - 952
  • [3] Purcell effect in disordered one-dimensional photonic crystals
    A. R. Gubaydullin
    K. A. Ivanov
    V. V. Nikolaev
    M. A. Kaliteevski
    [J]. Semiconductors, 2017, 51 : 947 - 952
  • [4] Reentrant delocalization transition in one-dimensional photonic quasicrystals
    Vaidya, Sachin
    Jörg, Christina
    Linn, Kyle
    Goh, Megan
    Rechtsman, Mikael C.
    [J]. Physical Review Research, 2023, 5 (03):
  • [5] Thermal radiation in one-dimensional photonic quasicrystals with graphene
    Costa, C. H.
    Vasconcelos, M. S.
    Fulco, U. L.
    Albuquerque, E. L.
    [J]. OPTICAL MATERIALS, 2017, 72 : 756 - 764
  • [6] Expressions for reflection and transmission coefficients for one-dimensional photonic quasicrystals
    Voronov, M. M.
    [J]. 2ND INTERNATIONAL SCHOOL AND CONFERENCE SAINT-PETERSBURG OPEN ON OPTOELECTRONICS, PHOTONICS, ENGINEERING AND NANOSTRUCTURES (SPBOPEN2015), 2015, 643
  • [7] Photonic band gap properties of one-dimensional photonic quasicrystals containing Nematic liquid crystals
    Trabelsi, Y.
    Ben Ali, N.
    Segovia-Chaves, Francis
    Vinck Posada, Herbert
    [J]. RESULTS IN PHYSICS, 2020, 19
  • [8] Tunable THz Graphene Plasmonic Filter Based on One-Dimensional Photonic Quasicrystals
    Zhong, Yibing
    Yu, Yinshan
    Shi, Shengli
    Gao, Mingxing
    Wang, Yuhao
    Lv, Chunyan
    [J]. ACTA PHYSICA POLONICA A, 2020, 138 (06) : 763 - 769
  • [9] Transmission spectra in graphene-based octonacci one-dimensional photonic quasicrystals
    Silva, E. F.
    Costa, C. H.
    Vasconcelos, M. S.
    Anselmo, D. H. A. L.
    [J]. OPTICAL MATERIALS, 2019, 89 : 623 - 629
  • [10] α-continuity properties of one-dimensional quasicrystals
    Damanik, D
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 192 (01) : 169 - 182