Distribution of the smallest eigenvalue in complex and real correlated Wishart ensembles

被引:6
|
作者
Wirtz, Tim [1 ]
Guhr, Thomas [1 ]
机构
[1] Univ Duisburg Essen, Fak Phys, Duisburg, Germany
关键词
random matrix theory; supersymmetry; multivariate statistics; correlated Wishart matrices; universality; RANDOM-MATRIX THEORY; QCD DIRAC OPERATOR; CHIRAL-SYMMETRY; SPECTRUM; SYSTEMS;
D O I
10.1088/1751-8113/47/7/075004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
VVFor the correlated Gaussian-Wishart ensemble we compute the distribution of the smallest eigenvalue and a related gap probability. We obtain exact results for the complex (beta = 2) and for the real case (beta = 1). For a particular set of empirical correlation matrices we find universality in the spectral density, for both real and complex ensembles and all kinds of rectangularity. We calculate the asymptotic and universal results for the gap probability and the distribution of the smallest eigenvalue. We use the supersymmetry method, in particular the generalized Hubbard-Stratonovich transformation and superbosonization.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Distribution of the Smallest Eigenvalue in the Correlated Wishart Model
    Wirtz, Tim
    Guhr, Thomas
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (09)
  • [2] Distribution of the Smallest Eigenvalue of Complex Central Semi-correlated Wishart Matrices
    Niu, Fangfang
    Zhang, Haochuan
    Yang, Hongwen
    Yang, Dacheng
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1788 - 1792
  • [3] The smallest eigenvalue distribution in the real Wishart-Laguerre ensemble with even topology
    Wirtz, T.
    Akemann, G.
    Guhr, T.
    Kieburg, M.
    Wegner, R.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (24)
  • [4] Completing the Picture for the Smallest Eigenvalue of Real Wishart Matrices
    Akemann, G.
    Guhr, T.
    Kieburg, M.
    Wegner, R.
    Wirtz, T.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (25)
  • [5] Finite N corrections to the limiting distribution of the smallest eigenvalue of Wishart complex matrices
    Perret, Anthony
    Schehr, Gregory
    [J]. RANDOM MATRICES-THEORY AND APPLICATIONS, 2016, 5 (01)
  • [6] Polynomial Expression for Distribution of the Smallest Eigenvalue of Wishart Matrices
    Zhang, Haochuan
    Niu, Fangfang
    Yang, Hongwen
    Zhang, Xin
    Yang, Dacheng
    [J]. 68TH IEEE VEHICULAR TECHNOLOGY CONFERENCE, FALL 2008, 2008, : 466 - 469
  • [7] The smallest eigenvalue distribution of the Jacobi unitary ensembles
    Lyu, Shulin
    Chen, Yang
    [J]. Mathematical Methods in the Applied Sciences, 2021, 44 (13): : 10121 - 10134
  • [8] The smallest eigenvalue distribution of the Jacobi unitary ensembles
    Lyu, Shulin
    Chen, Yang
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) : 10121 - 10134
  • [9] THE DISTRIBUTION AND MOMENTS OF THE SMALLEST EIGENVALUE OF A RANDOM MATRIX OF WISHART TYPE
    EDELMAN, A
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 159 : 55 - 80
  • [10] Compact smallest eigenvalue expressions in Wishart-Laguerre ensembles with or without a fixed trace
    Akemann, Gernot
    Vivo, Pierpaolo
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,