Some nonexistence results for positive solutions of elliptic equations in unbounded domains

被引:6
|
作者
Damascelli, L
Gladiali, F
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
Liouville theorems; Kelvin transform; maximum principle; moving plane;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove some Liouville type theorems for positive solutions of semilinear elliptic equations in the whole space R-N, N greater than or equal to 3, and in the half space R-+(N) with different boundary conditions, using the technique based on the Kelvin transform and the Alexandrov-Serrin method of moving hyperplanes. In particular we get new nonexistence results for elliptic problems in half spaces satisfying mixed (Dirichlet-Neumann) boundary conditions.
引用
收藏
页码:67 / 86
页数:20
相关论文
共 50 条