Content-based adaptive image denoising using spatial information

被引:4
|
作者
Zuo, Zhiyong [1 ,2 ]
Hu, Jing [1 ]
Lan, Xia [2 ]
Liu, Li [1 ]
Yang, Weidong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Inst Pattern Recognit & Artificial Intelligence, Natl Key Lab Sci & Technol Multispectral Informat, Wuhan 430074, Peoples R China
[2] China Elect Technol Grp Corp, Inst 10, Chengdu 610036, Peoples R China
来源
OPTIK | 2014年 / 125卷 / 18期
基金
中国国家自然科学基金;
关键词
Total variation; Image denoising; Split Bregman iteration; Spatial adaptive; ALGORITHMS; NOISE;
D O I
10.1016/j.ijleo.2014.05.017
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The maximum a posteriori (MAP) model is widely used in image processing fields, such as denoising, deblurring, segmentation, reconstruction, and others. However, the existing methods usually employ a fixed prior item and regularization parameter for the whole image and ignore the local spatial adaptive properties. Though the non-local total variation model has shown great promise because of exploiting the correlation in the image, the computation cost and memory load are the issues. In this paper, a content-based local spatial adaptive denoising algorithm is proposed. To realize the local spatial adaptive process of the prior model and regularization parameter, first the degraded image is divided into several same-sized blocks and the Tchebichef moment is used to analyze the local spatial properties of each block. Different property prior items and regularization parameters are then applied adaptively to different properties' blocks. To reduce the computational load in denoising process, the split Bregman iteration algorithm is employed to optimize the non-local total variation model and accelerate the speed of the image denoising. Finally, a set of experiments and performance evaluation using recent image quality assessment index are provided to assess the effectiveness of the proposed method. (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:5093 / 5101
页数:9
相关论文
共 50 条
  • [1] New use of spatial information for content-based image indexing
    Dombre, Julien
    Richard, Noël
    Fernandez-Maloigne, Christine
    Annales des Telecommunications/Annals of Telecommunications, 2002, 57 (9-10): : 943 - 957
  • [2] New use of spatial information for content-based image indexing
    Dombre, J
    Richard, N
    Fernandez-Maloigne, C
    ANNALS OF TELECOMMUNICATIONS, 2002, 57 (9-10) : 943 - 957
  • [3] Dominant Colour Descriptor with Spatial Information for Content-based Image Retrieval
    Mustaffa, Mas Rina
    Ahmad, Fatimah
    Rahmat, Rahmita Wirza O. K.
    Mahmod, Ramlan
    INTERNATIONAL SYMPOSIUM OF INFORMATION TECHNOLOGY 2008, VOLS 1-4, PROCEEDINGS: COGNITIVE INFORMATICS: BRIDGING NATURAL AND ARTIFICIAL KNOWLEDGE, 2008, : 1612 - 1620
  • [4] Integrating color and spatial information for content-based image retrieval inlarge image database
    Song, QB
    Yang, XR
    Shen, JY
    Chen, LM
    2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 2082 - 2086
  • [5] An adaptive technique for content-based image retrieval
    Urban, Jana
    Jose, Joemon M.
    van Rijsbergen, Cornelis J.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2006, 31 (01) : 1 - 28
  • [6] An adaptive technique for content-based image retrieval
    Jana Urban
    Joemon M. Jose
    Cornelis J. van Rijsbergen
    Multimedia Tools and Applications, 2006, 31 : 1 - 28
  • [7] Content-based image retrieval by spatial similarity
    Kulkarni, AM
    Joshi, RC
    DEFENCE SCIENCE JOURNAL, 2002, 52 (03) : 285 - 291
  • [8] Content-based image retrieval using spatial weighted chromaticity moments
    Zhengjun, Li
    Shuwu, Zhang
    2007 International Symposium on Computer Science & Technology, Proceedings, 2007, : 728 - 730
  • [9] Content-Based Image Retrieval Using Features in Spatial and Frequency Domains
    Kobayashi, Kazuhiro
    Chen, Qiu
    INTELLIGENCE IN THE ERA OF BIG DATA, ICSIIT 2015, 2015, 516 : 269 - 277
  • [10] Content-based Image Retrieval Using Salient Points and Spatial Distribution
    Jian, Muwei
    Ma, Peng
    Chen, Shi
    ISISE 2008: INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING, VOL 1, 2008, : 687 - +