DIMENSIONALITY REDUCTION OF HYPERSPECTRAL IMAGERY WITH SPARSE AND COLLABORATIVE GRAPHS

被引:0
|
作者
Ly, Nam [1 ]
Du, Qian [1 ]
Fowler, James E. [1 ]
Younan, Nicolas [1 ]
机构
[1] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
关键词
sparse representation; collaborative representation; graph theory; manifold learning; dimensionality reduction; hyperspectral imagery;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral image dimensionality reduction with graph-based approaches is considered. With available labeled samples, a graph can be formed with these samples by constructing an affinity matrix through their sparse or collaborative representations. In addition, sparse or collaborative representation can be done using within-class samples, resulting in block-sparse representation, although within each block the representation can be either sparse or non-sparse (collaborative). The experimental results show that the block-sparse plus within-block-collaborative representation can yield the best performance.
引用
下载
收藏
页数:4
相关论文
共 50 条
  • [1] Dimensionality Reduction of Hyperspectral Imagery Using Sparse Graph Learning
    Chen, Puhua
    Jiao, Licheng
    Liu, Fang
    Gou, Shuiping
    Zhao, Jiaqi
    Zhao, Zhiqiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (03) : 1165 - 1181
  • [2] Dimensionality reduction in hyperspectral imagery
    Gillis, D
    Bowles, J
    Winter, ME
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY IX, 2003, 5093 : 45 - 56
  • [3] Supervised Dimensionality Reduction of Hyperspectral Imagery Via Local and Global Sparse Representation
    Cao, Faxian
    Yang, Zhijing
    Hong, Xiaobin
    Cheng, Yongqiang
    Huang, Yuezhen
    Lv, Jujian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 3860 - 3874
  • [4] Dynamic Dimensionality Reduction for Hyperspectral Imagery
    Safavi, Haleh
    Liu, Keng-Hao
    Chang, Chein-I
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVII, 2011, 8048
  • [5] Unsupervised Dimensionality Reduction for Hyperspectral Imagery via Laplacian Regularized Collaborative Representation Projection
    Jiang, Xinwei
    Xiong, Liwen
    Yan, Qin
    Zhang, Yongshan
    Liu, Xiaobo
    Cai, Zhihua
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [6] Dimensionality Reduction via Regression in Hyperspectral Imagery
    Laparra, Valero
    Malo, Jesus
    Camps-Valls, Gustau
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2015, 9 (06) : 1026 - 1036
  • [7] Progressive dimensionality reduction by transform for hyperspectral imagery
    Chang, Chein-I
    Safavi, Haleh
    PATTERN RECOGNITION, 2011, 44 (10-11) : 2760 - 2773
  • [8] A Comparison of Dimensionality Reduction Techniques for Hyperspectral Imagery
    Race, Benjamin
    Wittman, Todd
    ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGING XXVIII, 2022, 12094
  • [9] DIMENSIONALITY REDUCTION FOR HYPERSPECTRAL IMAGERY BASED ON FASTICA
    Xin Qin Nian Yongjian Li Xiu Wan Jianwei Su Linghua (College of Electronic Science and Engineering
    Journal of Electronics(China), 2009, 26 (06) : 831 - 835
  • [10] Semisupervised Band Clustering for Dimensionality Reduction of Hyperspectral Imagery
    Su, Hongjun
    Yang, He
    Du, Qian
    Sheng, Yehua
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (06) : 1135 - 1139