A second-order positivity-preserving finite volume upwind scheme for air-mixed droplet flow in atmospheric icing

被引:26
|
作者
Jung, S. K. [1 ]
Myong, R. S. [2 ,3 ]
机构
[1] Korea Aerosp Ind LTD, Div Res & Dev, Sacheon 664942, Gyeongnam, South Korea
[2] Gyeongsang Natl Univ, Dept Aerosp & Syst Engn, Jinju 660701, Gyeongnam, South Korea
[3] Gyeongsang Natl Univ, Res Ctr Aircraft Parts Technol, Jinju 660701, Gyeongnam, South Korea
基金
新加坡国家研究基金会;
关键词
CFD; Two-phase flow; Eulerian; Approximate Riemann solver; GODUNOV-TYPE METHODS; COMPRESSIBLE EULER EQUATIONS; SHALLOW-WATER EQUATIONS; GAS-DYNAMICS; MAGNETOHYDRODYNAMICS; MODEL;
D O I
10.1016/j.compfluid.2013.08.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A second-order positivity-preserving finite volume upwind scheme based on the approximate Riemann solver is developed for computing the Eulerian two-phase flow composed of air and small water droplets in atmospheric icing. In order to circumvent a numerical problem due to the non-strictly hyperbolic nature of the original Eulerian droplet equations, a simple technique based on splitting of the original system into the well-posed hyperbolic part and the source term is proposed. The positivity-preserving Harten-Lax-van Leer-Contact approximate Riemann solver is then applied to the well-posed hyperbolic part of the Eulerian droplet equations. It is demonstrated that the new scheme satisfies the positivity condition for the liquid water contents. The numerical results of one and two-dimensional test problems are also presented as the verification and validation of the new scheme. Lastly, the exact analytical Riemann solutions of the well-posed hyperbolic part of the droplet equations in wet and dry regions are given for the verification study. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:459 / 469
页数:11
相关论文
共 50 条
  • [1] A SECOND-ORDER POSITIVITY-PRESERVING FINITE VOLUME SCHEME FOR DIFFUSION EQUATIONS ON GENERAL MESHES
    Gao, Zhiming
    Wu, Jiming
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01): : A420 - A438
  • [2] A second-order positivity-preserving well-balanced finite volume scheme for Euler equations with gravity for arbitrary hydrostatic equilibria
    Thomann, Andrea
    Zenk, Markus
    Klingenberg, Christian
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2019, 89 (11) : 465 - 482
  • [3] A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models
    Chertock, Alina
    Kurganov, Alexander
    NUMERISCHE MATHEMATIK, 2008, 111 (02) : 169 - 205
  • [4] A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models
    Alina Chertock
    Alexander Kurganov
    Numerische Mathematik, 2008, 111
  • [5] A second-order asymptotic-preserving and positivity-preserving discontinuous Galerkin scheme for the Kerr-Debye model
    Huang, Juntao
    Shu, Chi-Wang
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (03): : 549 - 579
  • [6] A Positivity-Preserving Second-Order BDF Scheme for the Cahn-Hilliard Equation with Variable Interfacial Parameters
    Dong, Lixiu
    Wang, Cheng
    Zhang, Hui
    Zhang, Zhengru
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 28 (03) : 967 - 998
  • [7] A positivity-preserving high order finite volume compact-WENO scheme for compressible Euler equations
    Guo, Yan
    Xiong, Tao
    Shi, Yufeng
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 274 : 505 - 523
  • [8] A positivity-preserving adaptive-order finite-difference scheme for GRMHD
    Deppe, Nils
    Kidder, Lawrence E.
    Teukolsky, Saul A.
    Bonilla, Marceline S.
    Hebert, Francois
    Kim, Yoonsoo
    Scheel, Mark A.
    Throwe, William
    Vu, Nils L.
    CLASSICAL AND QUANTUM GRAVITY, 2023, 40 (24)
  • [9] A second-order positivity preserving scheme for semilinear parabolic problems
    Hansen, Eskil
    Kramer, Felix
    Ostermann, Alexander
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (10) : 1428 - 1435
  • [10] A positivity-preserving finite volume scheme for three-temperature radiation diffusion equations
    Peng, Gang
    Gao, Zhiming
    Yan, Wenjing
    Feng, Xinlong
    APPLIED NUMERICAL MATHEMATICS, 2020, 152 : 125 - 140