Prospects for quantum computing with an array of ultracold polar paramagnetic molecules

被引:65
|
作者
Karra, Mallikarjun [1 ]
Sharma, Ketan [1 ]
Friedrich, Bretislav [1 ]
Kais, Sabre [2 ,3 ,4 ]
Herschbach, Dudley [5 ]
机构
[1] Max Planck Gesell, Fritz Haber Inst, Faradayweg 4-6, D-14195 Berlin, Germany
[2] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
[3] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
[4] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[5] Harvard Univ, Dept Chem & Chem Engn, 12 Oxford St, Cambridge, MA 02138 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2016年 / 144卷 / 09期
关键词
COMPUTATION; ENTANGLEMENT; UNIVERSAL; PHYSICS; STATE;
D O I
10.1063/1.4942928
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Arrays of trapped ultracold molecules represent a promising platform for implementing a universal quantum computer. DeMille [Phys. Rev. Lett. 88, 067901 (2002)] has detailed a prototype design based on Stark states of polar (1)Sigma molecules as qubits. Herein, we consider an array of polar (2)Sigma molecules which are, in addition, inherently paramagnetic and whose Hund's case (b) free-rotor pair-eigenstates are Bell states. We show that by subjecting the array to combinations of concurrent homogeneous and inhomogeneous electric and magnetic fields, the entanglement of the array's Stark and Zeeman states can be tuned and the qubit sites addressed. Two schemes for implementing an optically controlled CNOT gate are proposed and their feasibility discussed in the face of the broadening of spectral lines due to dipole-dipole coupling and the inhomogeneity of the electric and magnetic fields. (C) 2016 Author(s).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Ultracold LiCr: A New Pathway to Quantum Gases of Paramagnetic Polar Molecules
    Finelli, S.
    Ciamei, A.
    Restivo, B.
    Schemmer, M.
    Cosco, A.
    Inguscio, M.
    Trenkwalder, A.
    Zaremba-Kopczyk, K.
    Gronowski, M.
    Tomza, M.
    Zaccanti, M.
    PRX QUANTUM, 2024, 5 (02):
  • [2] Ultracold polar molecules near quantum degeneracy
    Ospelkaus, S.
    Ni, K. -K.
    de Miranda, M. H. G.
    Neyenhuis, B.
    Wang, D.
    Kotochigova, S.
    Julienne, P. S.
    Jin, D. S.
    Ye, J.
    FARADAY DISCUSSIONS, 2009, 142 : 351 - 359
  • [3] ULTRACOLD MOLECULES: THEIR FORMATION AND APPLICATION TO QUANTUM COMPUTING
    Cote, Robin
    QUANTUM INFORMATION AND COMPUTATION FOR CHEMISTRY, 2014, 154 : 403 - 448
  • [4] Tunable Superfluidity and Quantum Magnetism with Ultracold Polar Molecules
    Gorshkov, Alexey V.
    Manmana, Salvatore R.
    Chen, Gang
    Ye, Jun
    Demler, Eugene
    Lukin, Mikhail D.
    Rey, Ana Maria
    PHYSICAL REVIEW LETTERS, 2011, 107 (11)
  • [5] From Classical to Quantum Glasses with Ultracold Polar Molecules
    Lechner, Wolfgang
    Zoller, Peter
    PHYSICAL REVIEW LETTERS, 2013, 111 (18)
  • [6] Thermal and quantum fluctuations in chains of ultracold polar molecules
    Astrakharchik, G. E.
    De Chiara, Gabriele
    Morigi, Giovanna
    Boronat, Jordi
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2009, 42 (15)
  • [7] Formation of ultracold polar molecules in a single quantum state
    Cote, Robin
    Juarros, Elizabeth
    Kirby, Kate
    PHYSICAL REVIEW A, 2010, 81 (06):
  • [8] Feasibility of Kitaev quantum spin liquids in ultracold polar molecules
    Fukui, Kiyu
    Kato, Yasuyuki
    Nasu, Joji
    Motome, Yukitoshi
    PHYSICAL REVIEW B, 2022, 106 (01)
  • [9] Quantum sensing of ultralow temperature in biwire ultracold polar molecules
    Boudjemaa, Abdelaali
    Abbas, Karima
    Taiba, Asma Tahar
    Tan, Qing-Shou
    PHYSICAL REVIEW A, 2024, 110 (03)
  • [10] Implementing quantum algorithms in hyperfine levels of ultracold polar molecules
    Vranckx, Stephane
    Pellegrini, Philippe
    Desonter-Lecomte, Michele
    XXVII INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS (ICPEAC 2011), PTS 1-15, 2012, 388