On the continuity of the probabilistic representation of a semilinear Neumann-Dirichlet problem

被引:3
|
作者
Maticiuc, Lucian [1 ,2 ]
Rascanu, Aurel [1 ,3 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, Carol 1 Blvd,11, Iasi 700506, Romania
[2] Gheorghe Asachi Tech Univ, Dept Math, Carol I Blvd 11, Iasi 700506, Romania
[3] Romanian Acad, Iasi Branch, Octav Mayer Math Inst, Carol I Blvd 8, Iasi 700506, Romania
关键词
Feynman-Kac formula; Reflected diffusion processes; Continuity w.r.t. initial data; Neumann-Dirichlet boundary conditions; STOCHASTIC DIFFERENTIAL-EQUATIONS; BOUNDARY-CONDITIONS; OBSTACLE PROBLEM; REFLECTED BSDE; PARABOLIC PDE; SYSTEM; HOMOGENIZATION; EXISTENCE; DRIVEN;
D O I
10.1016/j.spa.2015.09.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we prove the continuity of the deterministic function u : [0, T] x (D) over bar -> R, defined by u (t, x) := Y-t(t,x), where the process (Y-s(t,x))(s is an element of[t,T]) is given by the generalized multivalued backward stochastic differential equation: {-dY(s)(t,x) + partial derivative phi(Y-s(t,x))ds + partial derivative psi(Y-s(t,x))dA(s)(t,x) (sic) f(s, X-s(t,x), Y-s(t,x))ds +g(s, X-s(t,x), Y-s(t,x))dA(s)(t,x) - Z(s)(t,x) dW(s), t <= s < T Y-T = h(X-T(t,x)). The process (X-s(t,x), A(s)(t,x))(s >= t) is the solution of a stochastic differential equation with reflecting boundary conditions. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:572 / 607
页数:36
相关论文
共 50 条