共 50 条
Sustainable Production of Drug-Loaded Particles by Membrane Emulsification
被引:24
|作者:
Albisa, Airama
[1
,2
,3
,4
]
Piacentini, Emma
[4
]
Arruebo, Manuel
[1
,2
,5
]
Sebastian, Victor
[1
,2
,5
]
Giorno, Lidietta
[4
]
机构:
[1] Univ Zaragoza, Dept Chem & Environm Engn, Mariano Esquillor Edif I D, Zaragoza 50018, Spain
[2] Univ Zaragoza, Nanosci Inst Aragon INA, Mariano Esquillor Edif I D, Zaragoza 50018, Spain
[3] Univ Calabria DIATIC UNICAL, Dept Environm & Chem Engn, Via P Bucci Cubo 45a, I-87036 Arcavacata Di Rende, CS, Italy
[4] CNR, ITM CNR, Inst Membrane Technol, Via P Bucci 17-C, I-87036 Arcavacata Di Rende, CS, Italy
[5] Ctr Invest Biomed Red, CIBER BBN, C Monforte de Lemos 3-5,Pabellon 11, Madrid 28029, Spain
来源:
ACS SUSTAINABLE CHEMISTRY & ENGINEERING
|
2018年
/
6卷
/
05期
关键词:
Membrane emulsification;
Drug-loaded particles;
Energy consumption;
Sustainability;
PLGA-PEG;
Ethyl acetate;
Dexamethasone;
PLGA NANOPARTICLES;
POLYMERIC NANOPARTICLES;
HYDROPHILIC DRUGS;
ETHYL-ACETATE;
SOLVENT;
DEXAMETHASONE;
DELIVERY;
RELEASE;
ENCAPSULATION;
MICROSPHERES;
D O I:
10.1021/acssuschemeng.8b00401
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
As the field of drug delivery is expanding into consumer products, it is essential to advance in the development of efficient synthesis technologies while preserving, at the same time, human health and the environment for future generations. Here, the sustainable development of polymeric particles for drug delivery is described. Poly (ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) based particles containing dexamethasone were produced by membrane emulsification-solvent diffusion methods. The ability of the synthesis process to control particle-size distribution and morphology and its green impactful (energy consumption, simple (sEF) and complete (cEF) E factor) were evaluated. Particles with sufficiently narrow distribution in their droplet size and mean diameter similar to the membrane pore diameter were produced by increasing the dispersed phase flux to 12.84 L h(-1) m(-2), minimizing the maximum shear stress to 1.12 Pa and the energy consumption to 3.96 x 10(5) J m(-3). The impact of the solvent used on size distribution, particles morphology and green performance scores was also studied. More uniform particles, with dense and slightly rough surface, high encapsulation efficiency and drug loading were obtained by replacing dichloromethane with ethyl acetate. The E factor was also decreased by 80%. Results demonstrated that membrane emulsification is an environmentally improved method for the production of drug delivery systems with enormous impact in terms of formulation quality, energy consumption reduction and waste minimization.
引用
收藏
页码:6663 / 6674
页数:23
相关论文