Lack-of-fit tests for quantile regression models

被引:13
|
作者
Dong, Chen [1 ]
Li, Guodong [2 ]
Feng, Xingdong [1 ]
机构
[1] Shanghai Univ Finance & Econ, Shanghai, Peoples R China
[2] Univ Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
High dimensional data; Hypothesis test; Lack of fit; Quantile regression; Two-sample test; COVARIANCE MATRICES; 2-SAMPLE TEST; INFERENCE; DIMENSION; EQUALITY; SET;
D O I
10.1111/rssb.12321
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper novelly transforms lack-of-fit tests for parametric quantile regression models into checking the equality of two conditional distributions of covariates. Accordingly, by applying some successful two-sample test statistics in the literature, two tests are constructed to check the lack of fit for low and high dimensional quantile regression models. The low dimensional test works well when the number of covariates is moderate, whereas the high dimensional test can maintain the power when the number of covariates exceeds the sample size. The null distribution of the high dimensional test has an explicit form, and the p-values or critical values can then be calculated directly. The finite sample performance of the tests proposed is examined by simulation studies, and their usefulness is further illustrated by two real examples.
引用
收藏
页码:629 / 648
页数:20
相关论文
共 50 条
  • [1] A lack-of-fit test for quantile regression process models
    Feng, Xingdong
    Liu, Qiaochu
    Wang, Caixing
    [J]. STATISTICS & PROBABILITY LETTERS, 2023, 192
  • [2] A lack-of-fit test for quantile regression
    He, XM
    Zhu, LX
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (464) : 1013 - 1022
  • [3] A lack-of-fit test for quantile regression models with high-dimensional covariates
    Conde-Amboage, Mercedes
    Sanchez-Sellero, Cesar
    Gonzalez-Manteiga, Wenceslao
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 88 : 128 - 138
  • [4] A new lack-of-fit test for quantile regression with censored data
    Conde-Amboage, Mercedes
    Van Keilegom, Ingrid
    Gonzalez-Manteiga, Wenceslao
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2021, 48 (02) : 655 - 688
  • [5] No effect and lack-of-fit permutation tests for functional regression
    Hervé Cardot
    Luboš Prchal
    Pascal Sarda
    [J]. Computational Statistics, 2007, 22 : 371 - 390
  • [6] No effect and lack-of-fit permutation tests for functional regression
    Cardot, Herve
    Prchal, Lubos
    Sarda, Pascal
    [J]. COMPUTATIONAL STATISTICS, 2007, 22 (03) : 371 - 390
  • [7] On the extended lack-of-fit tests for the censored regression model
    Lee, SH
    Lee, EJ
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2006, 76 (09) : 793 - 801
  • [8] A nonparametric lack-of-fit test for heteroscedastic regression models
    Aubin, Jean-Baptiste
    Leoni-Aubin, Samuela
    [J]. COMPTES RENDUS MATHEMATIQUE, 2011, 349 (3-4) : 215 - 217
  • [9] Semiparametric lack-of-fit tests in an additive hazard regression model
    Birgit Grund
    Jörg Polzehl
    [J]. Statistics and Computing, 2001, 11 : 323 - 335
  • [10] Tests and diagnostic plots for detecting lack-of-fit for circular-linear regression models
    Deschepper, E.
    Thas, O.
    Ottoy, J. P.
    [J]. BIOMETRICS, 2008, 64 (03) : 912 - 920