Is Robustness the Cost of Accuracy? - A Comprehensive Study on the Robustness of 18 Deep Image Classification Models

被引:183
|
作者
Su, Dong [1 ]
Zhang, Huan [2 ]
Chen, Hongge [3 ]
Yi, Jinfeng [4 ]
Chen, Pin-Yu [1 ]
Gao, Yupeng [1 ]
机构
[1] IBM Res, New York, NY 10598 USA
[2] Univ Calif Davis, Davis, CA 95616 USA
[3] MIT, Cambridge, MA 02139 USA
[4] JD AI Res, Beijing, Peoples R China
来源
关键词
Deep neural networks; Adversarial attacks; Robustness;
D O I
10.1007/978-3-030-01258-8_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The prediction accuracy has been the long-lasting and sole standard for comparing the performance of different image classification models, including the ImageNet competition. However, recent studies have highlighted the lack of robustness in well-trained deep neural networks to adversarial examples. Visually imperceptible perturbations to natural images can easily be crafted and mislead the image classifiers towards misclassification. To demystify the trade-offs between robustness and accuracy, in this paper we thoroughly benchmark 18 ImageNet models using multiple robustness metrics, including the distortion, success rate and transferability of adversarial examples between 306 pairs of models. Our extensive experimental results reveal several new insights: (1) linear scaling law - the empirical l(2) and l(infinity) distortion metrics scale linearly with the logarithm of classification error; (2) model architecture is a more critical factor to robustness than model size, and the disclosed accuracy-robustness Pareto frontier can be used as an evaluation criterion for ImageNet model designers; (3) for a similar network architecture, increasing network depth slightly improves robustness in l(infinity) distortion; (4) there exist models (in VGG family) that exhibit high adversarial transferability, while most adversarial examples crafted from one model can only be transferred within the same family. Experiment code is publicly available at https://github.com/huanzhang12/Adversarial_Survey.
引用
收藏
页码:644 / 661
页数:18
相关论文
共 50 条
  • [1] A Comprehensive Study on Robustness of Image Classification Models: Benchmarking and Rethinking
    Liu, Chang
    Dong, Yinpeng
    Xiang, Wenzhao
    Yang, Xiao
    Su, Hang
    Zhu, Jun
    Chen, Yuefeng
    He, Yuan
    Xue, Hui
    Zheng, Shibao
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (02) : 567 - 589
  • [2] CANARY: An Adversarial Robustness Evaluation Platform for Deep Learning Models on Image Classification
    Sun, Jiazheng
    Chen, Li
    Xia, Chenxiao
    Zhang, Da
    Huang, Rong
    Qiu, Zhi
    Xiong, Wenqi
    Zheng, Jun
    Tan, Yu-An
    ELECTRONICS, 2023, 12 (17)
  • [3] Impact of Attention on Adversarial Robustness of Image Classification Models
    Agrawal, Prachi
    Punn, Narinder Singh
    Sonbhadra, Sanjay Kumar
    Agarwal, Sonali
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3013 - 3019
  • [4] A Comprehensive Study on the Robustness of Deep Learning-Based Image Classification and Object Detection in Remote Sensing: Surveying and Benchmarking
    Mei, Shaohui
    Lian, Jiawei
    Wang, Xiaofei
    Su, Yuru
    Ma, Mingyang
    Chau, Lap-Pui
    JOURNAL OF REMOTE SENSING, 2024, 4
  • [5] Robustness of Deep Learning models in electrocardiogram noise detection and classification
    Rahman, Saifur
    Pal, Shantanu
    Yearwood, John
    Karmakar, Chandan
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 253
  • [6] Understanding Robustness of Deep Neural Network: A Comprehensive Robustness Analysis for a Deep Learning-Based Lung-Nodule Classification Model of CT Images with Respect to Image Noise
    Jia, X.
    Shen, C.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [7] Adversarial training and attribution methods enable evaluation of robustness and interpretability of deep learning models for image classification
    Santos, Flavio A. O.
    Zanchettin, Cleber
    Lei, Weihua
    Amaral, Luis A. Nunes
    PHYSICAL REVIEW E, 2024, 110 (05)
  • [8] Benchmarking Adversarial Robustness on Image Classification
    Dong, Yinpeng
    Fu, Qi-An
    Yang, Xiao
    Pang, Tianyu
    Su, Hang
    Xiao, Zihao
    Zhu, Jun
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 318 - 328
  • [9] Understanding Robustness of Transformers for Image Classification
    Bhojanapalli, Srinadh
    Chakrabarti, Ayan
    Glasner, Daniel
    Li, Daliang
    Unterthiner, Thomas
    Veit, Andreas
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10211 - 10221
  • [10] Robustness of musical features on deep learning models for music genre classification
    Singh, Yeshwant
    Biswas, Anupam
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 199