Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community

被引:466
|
作者
Harter, Johannes [1 ]
Krause, Hans-Martin [1 ]
Schuettler, Stefanie [1 ]
Ruser, Reiner [2 ]
Fromme, Markus [3 ]
Scholten, Thomas [3 ]
Kappler, Andreas [1 ]
Behrens, Sebastian [1 ]
机构
[1] Univ Tubingen, Ctr Appl Geosci, D-72076 Tubingen, Germany
[2] Univ Hohenheim, Inst Crop Sci, Stuttgart, Germany
[3] Univ Tubingen, Dept Geog, D-72076 Tubingen, Germany
来源
ISME JOURNAL | 2014年 / 8卷 / 03期
关键词
nitrogen cycle; biochar; denitrification; nitrification; nitrous oxide; nosZ; N2O emission; greenhouse gas; soil microbial community; NITROUS-OXIDE PRODUCTION; ALCALIGENES-FAECALIS; CARBON-DIOXIDE; METHANE FLUXES; NITRIC-OXIDE; NITRATE; REDUCTASE; DENITRIFICATION; DIVERSITY; FIXATION;
D O I
10.1038/ismej.2013.160
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Nitrous oxide (N2O) contributes 8% to global greenhouse gas emissions. Agricultural sources represent about 60% of anthropogenic N2O emissions. Most agricultural N2O emissions are due to increased fertilizer application. A considerable fraction of nitrogen fertilizers are converted to N2O by microbiological processes (that is, nitrification and denitrification). Soil amended with biochar (charcoal created by pyrolysis of biomass) has been demonstrated to increase crop yield, improve soil quality and affect greenhouse gas emissions, for example, reduce N2O emissions. Despite several studies on variations in the general microbial community structure due to soil biochar amendment, hitherto the specific role of the nitrogen cycling microbial community in mitigating soil N2O emissions has not been subject of systematic investigation. We performed a microcosm study with a water-saturated soil amended with different amounts (0%, 2% and 10% (w/w)) of high-temperature biochar. By quantifying the abundance and activity of functional marker genes of microbial nitrogen fixation (nifH), nitrification (amoA) and denitrification (nirK, nirS and nosZ) using quantitative PCR we found that biochar addition enhanced microbial nitrous oxide reduction and increased the abundance of microorganisms capable of N-2-fixation. Soil biochar amendment increased the relative gene and transcript copy numbers of the nosZ-encoded bacterial N2O reductase, suggesting a mechanistic link to the observed reduction in N2O emissions. Our findings contribute to a better understanding of the impact of biochar on the nitrogen cycling microbial community and the consequences of soil biochar amendment for microbial nitrogen transformation processes and N2O emissions from soil.
引用
下载
收藏
页码:660 / 674
页数:15
相关论文
共 50 条
  • [1] Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community
    Johannes Harter
    Hans-Martin Krause
    Stefanie Schuettler
    Reiner Ruser
    Markus Fromme
    Thomas Scholten
    Andreas Kappler
    Sebastian Behrens
    The ISME Journal, 2014, 8 : 660 - 674
  • [2] Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil
    Johannes Harter
    Ivan Guzman-Bustamante
    Stefanie Kuehfuss
    Reiner Ruser
    Reinhard Well
    Oliver Spott
    Andreas Kappler
    Sebastian Behrens
    Scientific Reports, 6
  • [3] Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil
    Harter, Johannes
    Guzman-Bustamante, Ivan
    Kuehfuss, Stefanie
    Ruser, Reiner
    Well, Reinhard
    Spott, Oliver
    Kappler, Andreas
    Behrens, Sebastian
    SCIENTIFIC REPORTS, 2016, 6
  • [4] Distinct N-cycling microbial communities contribute to microtopographic variation in soil N2O emissions from denitrification
    Krichels, Alexander H.
    Sanford, Robert A.
    Chee-Sanford, Joanne C.
    Connor, Lynn
    Van Allen, Rachel
    Kent, Angela D.
    Yang, Wendy H.
    Soil Biology and Biochemistry, 2025, 202
  • [5] Linking N2O emission from biochar-amended composting process to the abundance of denitrify (nirK and nosZ) bacteria community
    Shuqing Li
    Lina Song
    Yaguo Jin
    Shuwei Liu
    Qirong Shen
    Jianwen Zou
    AMB Express, 6
  • [6] Linking N2O emission from biochar-amended composting process to the abundance of denitrify (nirK and nosZ) bacteria community
    Li, Shuqing
    Song, Lina
    Jin, Yaguo
    Liu, Shuwei
    Shen, Qirong
    Zou, Jianwen
    AMB EXPRESS, 2016, 6
  • [7] Soil N2O and NOx emissions are directly linked with N-cycling enzymatic activities
    Pu, Yulin
    Zhu, Bo
    Dong, Zhixin
    Liu, Yun
    Wang, Changquan
    Ye, Chun
    APPLIED SOIL ECOLOGY, 2019, 139 : 15 - 24
  • [8] How do different antibiotic residues in manure change soil N2O emissions and soil N-cycling microbial communities?
    Yang, Zhongchen
    Groenigen, Jan Willem van
    Berendsen, Bjorn J. A.
    Philippot, Laurent
    van de Schans, Milou G. M.
    De Deyn, Gerlinde B.
    APPLIED SOIL ECOLOGY, 2024, 202
  • [9] Influence of integrated weed management system on N-cycling microbial communities and N2O emissions
    A. Vermue
    L. Philippot
    N. Munier-Jolain
    C. Hénault
    B. Nicolardot
    Plant and Soil, 2013, 373 : 501 - 514
  • [10] Influence of integrated weed management system on N-cycling microbial communities and N2O emissions
    Vermue, A.
    Philippot, L.
    Munier-Jolain, N.
    Henault, C.
    Nicolardot, B.
    PLANT AND SOIL, 2013, 373 (1-2) : 501 - 514