Approximating numbers with missing digits by algebraic numbers

被引:5
|
作者
Kristensen, Simon [1 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
diophantine approximation; transcendental numbers; Koksma's classification; Cantor sets; Hausdorff dimension;
D O I
10.1017/S001309150500057X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for a given base b and a proper subset E subset of {0,...,b - 1}, #E < b - 1, the set of numbers x E [0, 1] that have no digits from E in their expansion to base b consists almost exclusively of S*-numbers of type at most min{2, log b/log(b - #E)}. We also give upper bounds on the Hausdorff dimension of some exceptional sets.
引用
收藏
页码:657 / 666
页数:10
相关论文
共 50 条