Nucleosynthesis in massive stars with improved nuclear and stellar physics

被引:798
|
作者
Rauscher, T [1 ]
Heger, A
Hoffman, RD
Woosley, SE
机构
[1] Univ Basel, Dept Phys & Astron, CH-4056 Basel, Switzerland
[2] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA
[3] Lawrence Livermore Natl Lab, Nucl Theory & Modeling Grp, Livermore, CA 94550 USA
来源
ASTROPHYSICAL JOURNAL | 2002年 / 576卷 / 01期
关键词
nuclear reactions; nucleosynthesis; abundances stars : evolution; supernovae : general;
D O I
10.1086/341728
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the first calculations to follow the evolution of all stable nuclei and their radioactive progenitors in stellar models computed from the onset of central hydrogen burning through explosion as Type II supernovae. Calculations are performed for Population I stars of 15, 19, 20, 21, and 25 M-circle dot using the most recently available experimental and theoretical nuclear data, revised opacity tables, neutrino losses, and weak interaction rates and taking into account mass loss due to stellar winds. A novel "adaptive" reaction network is employed with a variable number of nuclei ( adjusted each time step) ranging from similar to700 on the main sequence to greater than or similar to2200 during the explosion. The network includes, at any given time, all relevant isotopes from hydrogen through polonium (Z = 84). Even the limited grid of stellar masses studied suggests that overall good agreement can be achieved with the solar abundances of nuclei between O-16 and Zr-90. Interesting discrepancies are seen in the 20 M-circle dot model and ( so far, only in that model) are a consequence of the merging of the oxygen, neon, and carbon shells about a day prior to core collapse. We find that, in some stars, most of the "p-process" nuclei can be produced in the convective oxygen-burning shell moments prior to collapse; in others, they are made only in the explosion. Serious deficiencies still exist in all cases for the p-process isotopes of Ru and Mo.
引用
收藏
页码:323 / 348
页数:26
相关论文
共 50 条
  • [1] Hydrostatic and explosive nucleosynthesis in massive stars using improved nuclear and stellar physics
    Rauscher, T
    Heger, A
    Hoffman, RD
    Woosley, SE
    NUCLEAR PHYSICS A, 2003, 718 : 463C - 465C
  • [2] Stellar Nucleosynthesis: s-Process in Massive Stars
    El Eid, Mounib
    FIFTH EUROPEAN SUMMER SCHOOL ON EXPERIMENTAL NUCLEAR ASTROPHYSICS, 2010, 1213 : 74 - 83
  • [3] Massive Stars: Input Physics and Stellar Models
    M. F. El Eid
    L.-S. The
    B. S. Meyer
    Space Science Reviews, 2009, 147 : 1 - 29
  • [4] Massive Stars: Input Physics and Stellar Models
    El Eid, M. F.
    The, L.-S.
    Meyer, B. S.
    SPACE SCIENCE REVIEWS, 2009, 147 (1-2) : 1 - 29
  • [6] Nuclear data needs for the study of nucleosynthesis in massive stars
    Woosley, SE
    Heger, A
    Rauscher, T
    Hoffman, RD
    NUCLEAR PHYSICS A, 2003, 718 : 3C - 12C
  • [7] Nucleosynthesis in massive stars
    Langer, N
    Heger, A
    Braun, H
    STELLAR EVOLUTION, STELLAR EXPLOSIONS AND GALACTIC CHEMICAL EVOLUTION, 1998, : 377 - 384
  • [8] NUCLEOSYNTHESIS IN MASSIVE STARS
    ELEID, MF
    SPACE SCIENCE REVIEWS, 1993, 66 (1-4) : 383 - 389
  • [9] Nucleosynthesis in massive stars and supernovae
    Woosley, SE
    Hoffman, RD
    Timmes, FX
    Weaver, TA
    Thielemann, FK
    NUCLEAR PHYSICS A, 1997, 621 (1-2) : C445 - C452
  • [10] Explosive nucleosynthesis in massive stars
    Limongi, Marco
    Chieffi, Alessandro
    10TH INTERNATIONAL SYMPOSIUM ON ORIGIN OF MATTER AND EVOLUTION OF GALAXIES, 2010, 1269 : 110 - +