A novel Machine Learning-based approach for the detection of SSH botnet infection

被引:15
|
作者
Martinez Garre, Jose Tomas [1 ]
Gil Perez, Manuel [1 ]
Ruiz-Martinez, Antonio [1 ]
机构
[1] Univ Murcia, Dept Informat & Commun Engn, Murcia 30100, Spain
基金
欧盟地平线“2020”;
关键词
Botnet; Machine learning; Zero-day malware; Honeypot; High interaction;
D O I
10.1016/j.future.2020.09.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Botnets are causing severe damages to users, companies, and governments through information theft, abuse of online services, DDoS attacks, etc. Although significant research is being made to detect them and mitigate their effect, they are exponentially increasing due to new zero-day attacks, a variation of their behavior, and obfuscation techniques. High Interaction Honeypots (HIH) are the only honeypots able to capture attacks and log all the information generated by attackers when setting up a botnet. The data generated is being processed using Machine Learning (ML) techniques for detection since they can detect hidden patterns. However, so far, research has been focused on intermediate phases of the botnet's life cycle during operation, underestimating the initial phase of infection. To the best of our knowledge, this is the first solution in the infection phase of SSH-based botnets. Therefore, we have designed an approach based on an SSH-based HIH to generate a dataset consisting of executed commands and network information. Herein, we have applied ML techniques for the development of a real-time detection model. This approach reached a very high level of prediction and zero false negatives. Indeed, our system detected all known and unknown SSH sessions intended to infect our honeypots. Thus, our research has demonstrated that new SSH infections can be detected through ML techniques. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:387 / 396
页数:10
相关论文
共 50 条
  • [1] An efficient reinforcement learning-based Botnet detection approach
    Alauthman, Mohammad
    Aslam, Nauman
    Al-kasassbeh, Mouhammd
    Khan, Suleman
    Al-Qerem, Ahmad
    Choo, Kim-Kwang Raymond
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2020, 150 (150)
  • [2] An Approach for Detection of Botnet Based on Machine Learning Classifier
    Tikekar P.C.
    Sherekar S.S.
    Kumar J.
    SN Computer Science, 5 (3)
  • [3] Machine Learning-Based IoT-Botnet Attack Detection with Sequential Architecture†
    Soe, Yan Naung
    Feng, Yaokai
    Santosa, Paulus Insap
    Hartanto, Rudy
    Sakurai, Kouichi
    SENSORS, 2020, 20 (16) : 1 - 15
  • [4] Towards Effective Feature Selection in Machine Learning-Based Botnet Detection Approaches
    Beigi, Elaheh Biglar
    Jazi, Hossein Hadian
    Stakhanova, Natalia
    Ghorbani, Ali A.
    2014 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY (CNS), 2014, : 247 - 255
  • [5] Reviewing various feature selection techniques in machine learning-based botnet detection
    Baruah, Sangita
    Borah, Dhruba Jyoti
    Deka, Vaskar
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (12):
  • [6] A novel hybrid feature selection and ensemble-based machine learning approach for botnet detection
    Hossain, Md. Alamgir
    Islam, Md. Saiful
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [7] A novel hybrid feature selection and ensemble-based machine learning approach for botnet detection
    Md. Alamgir Hossain
    Md. Saiful Islam
    Scientific Reports, 13
  • [8] A GPU-based machine learning approach for detection of botnet attacks
    Motylinski, Michal
    MacDermott, Aine
    Iqbal, Farkhund
    Shah, Babar
    COMPUTERS & SECURITY, 2022, 123
  • [9] Botnet Detection Approach Using Graph-Based Machine Learning
    Alharbi, Afnan
    Alsubhi, Khalid
    IEEE ACCESS, 2021, 9 (09): : 99166 - 99180
  • [10] A Dimensionality Reduction Approach for Machine Learning Based IoT Botnet Detection
    Susanto
    Stiawan, Deris
    Arifin, M. Agus Syamsul
    Rejito, Juli
    Idris, Mohd. Yazid
    Budiarto, Rahmat
    2021 8TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTERSCIENCE AND INFORMATICS (EECSI) 2021, 2021, : 26 - 30