Fundamental limits to graphene plasmonics

被引:456
|
作者
Ni, G. X. [1 ,2 ]
McLeod, A. S. [1 ,2 ]
Sun, Z. [2 ]
Wang, L. [3 ]
Xiong, L. [1 ,2 ]
Post, K. W. [2 ]
Sunku, S. S. [1 ,4 ]
Jiang, B-Y [2 ]
Hone, J. [3 ]
Dean, C. R. [1 ]
Fogler, M. M. [2 ]
Basov, D. N. [1 ,2 ]
机构
[1] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
[2] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[3] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
关键词
BORON-NITRIDE; POLARITONS; SUPERLATTICES; CONDUCTIVITY; LAYER;
D O I
10.1038/s41586-018-0136-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plasmon polaritons are hybrid excitations of light and mobile electrons that can confine the energy of long-wavelength radiation at the nanoscale. Plasmon polaritons may enable many enigmatic quantum effects, including lasing(1), topological protection(2,3) and dipole-forbidden absorption(4). A necessary condition for realizing such phenomena is a long plasmonic lifetime, which is notoriously difficult to achieve for highly confined modes(5). Plasmon polaritons in graphene-hybrids of Dirac quasiparticles and infrared photons-provide a platform for exploring light-matter interaction at the nanoscale(6,7). However, plasmonic dissipation in graphene is substantial(8) and its fundamental limits remain undetermined. Here we use nanometre-scale infrared imaging to investigate propagating plasmon polaritons in high-mobility encapsulated graphene at cryogenic temperatures. In this regime, the propagation of plasmon polaritons is primarily restricted by the dielectric losses of the encapsulated layers, with a minor contribution from electron-phonon interactions. At liquid-nitrogen temperatures, the intrinsic plasmonic propagation length can exceed 10 micrometres, or 50 plasmonic wavelengths, thus setting a record for highly confined and tunable polariton modes. Our nanoscale imaging results reveal the physics of plasmonic dissipation and will be instrumental in mitigating such losses in heterostructure engineering applications.
引用
收藏
页码:530 / +
页数:21
相关论文
共 50 条
  • [1] Fundamental limits to graphene plasmonics
    G. X. Ni
    A. S. McLeod
    Z. Sun
    L. Wang
    L. Xiong
    K. W. Post
    S. S. Sunku
    B.-Y. Jiang
    J. Hone
    C. R. Dean
    M. M. Fogler
    D. N. Basov
    Nature, 2018, 557 : 530 - 533
  • [2] Graphene plasmonics
    Grigorenko, A. N.
    Polini, M.
    Novoselov, K. S.
    NATURE PHOTONICS, 2012, 6 (11) : 749 - 758
  • [3] Graphene plasmonics
    A. N. Grigorenko
    M. Polini
    K. S. Novoselov
    Nature Photonics, 2012, 6 : 749 - 758
  • [4] Graphene Plasmonics
    Garcia de Abajo, F. Javier
    Koppens, Frank H. L.
    Chang, Darrick E.
    Thongrattanasiri, Sukosin
    FOURTH INTERNATIONAL WORKSHOP ON THEORETICAL AND COMPUTATIONAL NANOPHOTONICS (TACONA-PHOTONICS 2011), 2011, 1398
  • [5] Graphene photonics and plasmonics
    Xia, Fengnian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [6] Nonlinear graphene plasmonics
    Ooi, Kelvin J. A.
    Tan, Dawn T. H.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2206):
  • [8] GRAPHENE PLASMONICS Damping of plasmons in graphene
    Buljan, Hrvoje
    Jablan, Marinko
    Soljacic, Marin
    NATURE PHOTONICS, 2013, 7 (05) : 346 - 348
  • [9] Graphene nanoribbon plasmonic waveguides: fundamental limits and device implications
    Rakheja, S.
    Sengupta, P.
    2014 72ND ANNUAL DEVICE RESEARCH CONFERENCE (DRC), 2014, : 105 - +
  • [10] Reliability, Failure, and Fundamental Limits of Graphene and Carbon Nanotube Interconnects
    Liao, Albert D.
    Behnam, Ashkan
    Dorgan, Vincent E.
    Li, Zuanyi
    Pop, Eric
    2013 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2013,