Rosochatius Deformed Soliton Hierarchy with Self-Consistent Sources

被引:0
|
作者
Yao Yu-Qin [2 ]
Zeng Yun-Bo [1 ]
机构
[1] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[2] China Agr Univ, Dept Appl Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Rosochatius deformation; soliton hierarchy with self-consistent sources; higher-order constrained flows; Lax representation; NONLINEAR SCHRODINGER-EQUATION; INTEGRABLE SYSTEMS; CONSTRAINED FLOWS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Integrable Rosochatius deformations of finite-dimensional integrable systems are generalized to the soliton hierarchy with self-consistent sources. The integrable Rosochatius deformations of the Kaup-Newell hierarchy with self-consistent sources, of the TD hierarchy with self-consistent sources, and of the Jaulent-Miodek hierarchy with self-consistent sources, together with their Lax representations are presented.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 50 条