MAX-SNP hardness and approximation of selected-internal steiner trees

被引:0
|
作者
Hsieh, Sun-Yuan [1 ]
Yang, Shih-Cheng [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 701, Taiwan
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we consider an interesting variant of the well-known Steiner tree problem: Given a complete graph G = (V, E) with a cost function c : E -> R+ and two subsets R and R' satisfying R' subset of R subset of V, a selected-internal Steiner tree is a Steiner tree which contains (or spans) all the vertices in R such that each vertex in R' cannot be a leaf. The selected-internal Steiner tree problem is to find a selected-internal Steiner tree with the minimum cost. In this paper, we show that the problem is MAX SNP-hard even when the costs of all edges in the input graph are restricted to either 1 or 2. We also present an approximation algorithm for the problem.
引用
收藏
页码:449 / 458
页数:10
相关论文
共 16 条
  • [1] (1+ρ)-approximation for selected-internal Steiner minimum tree
    Li, Xianyue
    Huang, Yaochun
    Zou, Feng
    Kim, Donghyun
    Wu, Weili
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2008, 5092 : 568 - +
  • [2] Approximating the selected-internal Steiner tree
    Hsieh, Sun-Yuan
    Yang, Shih-Cheng
    THEORETICAL COMPUTER SCIENCE, 2007, 381 (1-3) : 288 - 291
  • [3] A Better Constant-Factor Approximation for Selected-Internal Steiner Minimum Tree
    Li, Xianyue
    Zou, Feng
    Huang, Yaochun
    Kim, Donghyun
    Wu, Weili
    ALGORITHMICA, 2010, 56 (03) : 333 - 341
  • [4] The Clustered Selected-Internal Steiner Tree Problem
    Chen, Yen Hung
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2022, 33 (01) : 55 - 66
  • [5] A Better Constant-Factor Approximation for Selected-Internal Steiner Minimum Tree
    Xianyue Li
    Feng Zou
    Yaochun Huang
    Donghyun Kim
    Weili Wu
    Algorithmica, 2010, 56 : 333 - 341
  • [6] Hardness and approximation of octilinear Steiner trees
    Müller-Hannemann, M
    Schulze, A
    ALGORITHMS AND COMPUTATION, 2005, 3827 : 256 - 265
  • [7] Hardness and approximation of octilinear Steiner trees
    Mueller-Hannemann, Matthias
    Schulze, Anna
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2007, 17 (03) : 231 - 260
  • [8] The Bottleneck Selected-Internal and Partial Terminal Steiner Tree Problems
    Chen, Yen Hung
    NETWORKS, 2016, 68 (04) : 331 - 339
  • [9] Hardness and approximation results for packing Steiner trees
    Cheriyan, J
    Salavatipour, MR
    ALGORITHMICA, 2006, 45 (01) : 21 - 43
  • [10] Hardness and approximation results for packing Steiner trees
    Cheriyan, J
    Salavatipour, MR
    ALGORITHMS ESA 2004, PROCEEDINGS, 2004, 3221 : 180 - 191