Existence of solutions for wave-type hemivariational inequalities with noncoercive viscosity damping

被引:10
|
作者
Gasinski, L [1 ]
Smolka, M [1 ]
机构
[1] Jagiellonian Univ, Inst Comp Sci, PL-30072 Krakow, Poland
关键词
hemivariational inequalities; Clarke subdifferential; viscosity damping;
D O I
10.1016/S0022-247X(02)00057-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of solutions for a hyperbolic hemivariational inequality of the form u" + Au' + Bu + partial derivativej(u) is an element of f, where B is a linear elliptic operator and A is linear and nonnegative (not necessarily coercive). (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:150 / 164
页数:15
相关论文
共 50 条
  • [1] An existence theorem for wave-type hyperbolic hemivariational inequalities
    Gasinski, L
    Smolka, M
    MATHEMATISCHE NACHRICHTEN, 2002, 242 : 79 - 90
  • [2] Existence Results for Evolution Noncoercive Hemivariational Inequalities
    Z. H. Liu
    Journal of Optimization Theory and Applications, 2004, 120 : 417 - 427
  • [3] Existence results for evolution noncoercive hemivariational inequalities
    Liu, ZH
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 120 (02) : 417 - 427
  • [4] Existence of Solutions for Noncoercive Hemivariational Inequalities by an Equilibrium Approach Under Pseudomonotone Perturbation
    Lahmdani, A.
    Chadli, O.
    Yao, J. C.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 160 (01) : 49 - 66
  • [5] Existence of Solutions for a Class of Noncoercive Variational–Hemivariational Inequalities Arising in Contact Problems
    Yongjian Liu
    Zhenhai Liu
    Ching-Feng Wen
    Jen-Chih Yao
    Shengda Zeng
    Applied Mathematics & Optimization, 2021, 84 : 2037 - 2059
  • [6] Existence of Solutions for Noncoercive Hemivariational Inequalities by an Equilibrium Approach Under Pseudomonotone Perturbation
    A. Lahmdani
    O. Chadli
    J. C. Yao
    Journal of Optimization Theory and Applications, 2014, 160 : 49 - 66
  • [7] Existence of Solutions for a Class of Noncoercive Variational-Hemivariational Inequalities Arising in Contact Problems
    Liu, Yongjian
    Liu, Zhenhai
    Wen, Ching-Feng
    Yao, Jen-Chih
    Zeng, Shengda
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (02): : 2037 - 2059
  • [8] Existence of solutions to evolution second order hemivariational inequalities with multivalued damping
    Denkowski, Z
    Migórski, S
    SYSTEM MODELING AND OPTIMIZATION, 2005, 166 : 203 - 215
  • [9] Existence of antiperiodic solutions for hemivariational inequalities
    Park, Jong Yeoul
    Ha, Tae Gab
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (04) : 747 - 767
  • [10] Existence of solutions for elliptic hemivariational inequalities
    Wang, ji-an
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (02) : 338 - 346