Spatially resolved In and As distributions in InGaAs/GaP and InGaAs/GaAs quantum dot systems

被引:2
|
作者
Shen, J. [1 ]
Song, Y. [2 ]
Lee, M. L. [2 ]
Cha, J. J. [1 ,3 ]
机构
[1] Yale Univ, Dept Mech Engn & Mat Sci, New Haven, CT 06511 USA
[2] Yale Univ, Dept Elect Engn, New Haven, CT 06511 USA
[3] Yale Univ, Energy Sci Inst, West Haven, CT 06516 USA
基金
美国国家科学基金会;
关键词
quantum dots; chemical mapping; InGaAs; GAAS MATRIX; INXGA1-XAS; GROWTH; ISLANDS; SPACE; LAYER;
D O I
10.1088/0957-4484/25/46/465702
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
InGaAs quantum dots (QDs) on GaP are promising for monolithic integration of optoelectronics with Si technology. To understand and improve the optical properties of InGaAs/GaP QD systems, detailed measurements of the QD atomic structure as well as the spatial distributions of each element at high resolution are crucial. This is because the QD band structure, band alignment, and optical properties are determined by the atomic structure and elemental composition. Here, we directly measure the inhomogeneous distributions of In and As in InGaAs QDs grown on GaAs and GaP substrates at the nanoscale using energy dispersive x-ray spectral mapping in a scanning transmission electron microscope. We find that the In distribution is broader on GaP than on GaAs, and as a result, the QDs appear to be In-poor using a GaP matrix. Our findings challenge some of the assumptions made for the concentrations and distributions of In within InGaAs/GaAs or InGaAs/GaP QD systems and provide detailed structural and elemental information to modify the current band structure understanding. In particular, the findings of In deficiency and inhomogeneous distribution in InGaAs/GaP QD systems help to explain photoluminescence spectral differences between InGaAs/GaAs and InGaAs/GaP QD systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Spatially resolved characterization of InGaAs/GaAs quantum dot structures by scanning spreading resistance microscopy
    Hakkarainen, T.
    Douheret, O.
    Anand, S.
    Fu, L.
    Tan, H. H.
    Jagadish, C.
    APPLIED PHYSICS LETTERS, 2010, 97 (04)
  • [2] InGaAs/GaAs quantum dot lasers
    Bimberg, D
    Kirstaedter, N
    Ledentsov, NN
    Alferov, ZI
    Kop'ev, PS
    Ustinov, VM
    Zaitsev, SV
    Maximov, MV
    OPTICAL SPECTROSCOPY OF LOW DIMENSIONAL SEMICONDUCTORS, 1997, 344 : 315 - 330
  • [3] InGaAs/GaAs quantum dot with material mixing
    Filikhin, I.
    Suslov, V. M.
    Vlahovic, B.
    NSTI NANOTECH 2008, VOL 1, TECHNICAL PROCEEDINGS: MATERIALS, FABRICATION, PARTICLES, AND CHARACTERIZATION, 2008, : 608 - +
  • [4] Theoretical study on controllability of quantum state energy in an InGaAs/GaAs quantum dot buried in InGaAs
    Mukai, Kohki
    Nakashima, Kenta
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2006, 6 (12) : 3705 - 3709
  • [5] Submonolayer InGaAs/GaAs quantum dot solar cells
    Lam, Phu
    Wu, Jiang
    Tang, Mingchu
    Jiang, Qi
    Hatch, Sabina
    Beanland, Richard
    Wilson, James
    Allison, Rebecca
    Liu, Huiyun
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 126 : 83 - 87
  • [6] Ramsey fringes in a single InGaAs/GaAs quantum dot
    Ester, P.
    Stuffer, S.
    de Vasconcellos, S. Michaelis
    Bichler, M.
    Zrenner, A.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (10): : 2229 - 2232
  • [7] Intrinsic performance of InGaAs/GaAs quantum dot lasers
    Thomson, J
    Smowton, P
    Summers, H
    Herrmann, E
    Blood, P
    Hopkinson, M
    LEOS 2000 - IEEE ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS. 1 & 2, 2000, : 308 - 309
  • [8] InGaAs-GaAs quantum-dot lasers
    Technical Univ-Berlin, Berlin, Germany
    IEEE J Sel Top Quantum Electron, 2 (196-205):
  • [9] InGaAs-GaAs quantum-dot lasers
    Bimberg, D
    Kirstaedter, N
    Ledentsov, NN
    Alferov, ZI
    Kopev, PS
    Ustinov, VM
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (02) : 196 - 205
  • [10] Spatially resolved scanning tunneling luminescence on self-assembled InGaAs/GaAs quantum dots
    Jacobs, SEJ
    Kemerink, M
    Koenraad, PM
    Hopkinson, M
    Salemink, HWM
    Wolter, JH
    APPLIED PHYSICS LETTERS, 2003, 83 (02) : 290 - 292