Multiple low-temperature skyrmionic states in a bulk chiral magnet

被引:53
|
作者
Bannenberg, Lars J. [1 ]
Wilhelm, Heribert [2 ,7 ]
Cubitt, Robert [3 ]
Labh, Ankit [1 ]
Schmidt, Marcus P. [4 ]
Lelievre-Berna, Eddy [3 ]
Pappas, Catherine [1 ]
Mostovoy, Maxim [5 ]
Leonov, Andrey O. [6 ]
机构
[1] Delft Univ Technol, Fac Sci Appl, Mekelweg 15, NL-2629 JB Delft, Netherlands
[2] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England
[3] Inst Laue Langevin, 71 Ave Martyrs,CS 20156, F-38042 Grenoble, France
[4] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany
[5] Univ Groningen, Zernike Inst Adv Mat, NL-9700 AB Groningen, Netherlands
[6] Hiroshima Univ, Chiral Res Ctr, Higashihiroshima, Hiroshima 7398526, Japan
[7] Helmholtz Inst Ulm, Helmholtzstr 11, D-89081 Ulm, Germany
关键词
HELICOIDAL STRUCTURES; PHASE-TRANSITIONS; ANTIFERROMAGNETS; LATTICE; FIELD;
D O I
10.1038/s41535-019-0150-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic skyrmions are topologically protected nanoscale spin textures with particle-like properties. In bulk cubic helimagnets, they appear under applied magnetic fields and condense spontaneously into a lattice in a narrow region of the phase diagram just below the magnetic ordering temperature, the so-called A-phase. Theory, however, predicts skyrmions to be locally stable in a wide range of magnetic fields and temperatures. Our neutron diffraction measurements reveal the formation of skyrmion states in large areas of the magnetic phase diagram, from the lowest temperatures up to the A-phase. We show that nascent and disappearing spiral states near critical lines catalyze topological charge changing processes, leading to the formation and destruction of skyrmionic states at low temperatures, which are thermodynamically stable or metastable depending on the orientation and strength of the magnetic field. Skyrmions are surprisingly resilient to high magnetic fields: the memory of skyrmion lattice states persists in the field polarized state, even when the skyrmion lattice signal has disappeared. These findings highlight the paramount role of magnetic anisotropies in stabilizing skyrmionic states and open up new routes for manipulating these quasi-particles towards energy-efficient spintronics applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Multiple low-temperature skyrmionic states in a bulk chiral magnet
    Lars J. Bannenberg
    Heribert Wilhelm
    Robert Cubitt
    Ankit Labh
    Marcus P. Schmidt
    Eddy Lelièvre-Berna
    Catherine Pappas
    Maxim Mostovoy
    Andrey O. Leonov
    npj Quantum Materials, 4
  • [2] Calorimetric Study of Skyrmionic Chiral Magnet MnSi
    Samatham, S. Shanmukharao
    Ganesan, V.
    SOLID STATE PHYSICS: PROCEEDINGS OF THE 58TH DAE SOLID STATE PHYSICS SYMPOSIUM 2013, PTS A & B, 2014, 1591 : 1748 - 1749
  • [3] Tunable gigahertz dynamics of low-temperature skyrmion lattice in a chiral magnet
    Lee, Oscar
    Sahliger, Jan
    Aqeel, Aisha
    Khan, Safe
    Seki, Shinichiro
    Kurebayashi, Hidekazu
    Back, Christian H.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (09)
  • [4] Skyrmionic magnetization configurations at chiral magnet/ferromagnet heterostructures
    Kawaguchi, Yuki
    Tanaka, Yukio
    Nagaosa, Naoto
    PHYSICAL REVIEW B, 2016, 93 (06)
  • [5] Cycloidal versus skyrmionic states in mesoscopic chiral magnets
    Mulkers, Jeroen
    Milosevic, Milorad V.
    Van Waeyenberge, Bartel
    PHYSICAL REVIEW B, 2016, 93 (21)
  • [6] Understanding low-temperature bulk transport in samarium hexaboride without relying on in-gap bulk states
    Rakoski, A.
    Eo, Y. S.
    Sun, K.
    Kurdak, C.
    PHYSICAL REVIEW B, 2017, 95 (19)
  • [7] THE LOW-TEMPERATURE SUPERCONDUCTING MAGNET SUSPENSION SYSTEM
    GORSKY, OI
    DZENZERSKY, VA
    LYASHENKO, VI
    SHUSTOV, GR
    ZELDINA, EA
    PHYSICA C, 1994, 230 (1-2): : 213 - 216
  • [8] Low-temperature superconducting magnet suspension system
    Gorsky, O.I., 1600, Elsevier Science Publishers B.V., Amsterdam, Netherlands (230): : 1 - 2
  • [10] Low-temperature helium in bulk and in restricted geometries
    Brewer, DF
    PHYSICA B, 2000, 280 (1-4): : 4 - 10