Chaos in hyperspace system

被引:19
|
作者
Ma, Xianfeng [1 ]
Hou, Bingzhe [2 ]
Liao, Gongfu [2 ]
机构
[1] Nanjing Normal Univ, Sch Math & Comp Sci, Nanjing 210097, Peoples R China
[2] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
关键词
ZERO TOPOLOGICAL-ENTROPY; TRIANGULAR MAPS;
D O I
10.1016/j.chaos.2007.08.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, d) be a compact metric space and f: X -> X be continuous. Let (f) over bar be the natural extension of f to the space of all non-empty compact subsets of X endowed with the Hausdorff metric induced by d. In this paper. some dynamical properties of f and I are considered. It is shown that positive topological entropy, Li-Yorke chaos and distributional chaos of f imply those off, respectively, but not conversely. The results give art answer to the question proposed by Roman-Flores. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:653 / 660
页数:8
相关论文
共 50 条
  • [1] CHAOS ON HYPERSPACE
    Beran, Zdenek
    Celikovsky, Sergej
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (05):
  • [2] Chaos for induced hyperspace maps
    Banks, J
    CHAOS SOLITONS & FRACTALS, 2005, 25 (03) : 681 - 685
  • [3] A Class of Hyperspace Systems and Distributional Chaos
    Wang Wei
    Zhu Xiaogang
    APPLIED MECHANICS, MATERIALS AND MANUFACTURING IV, 2014, 670-671 : 1570 - 1572
  • [4] Chaos for multivalued maps and induced hyperspace maps
    Andres, Jan
    CHAOS SOLITONS & FRACTALS, 2020, 138
  • [5] Chaos in Hyperspace: Ray Dynamics in Media with Hyperbolic Dispersion
    Narimanov, Evgenii E.
    METAMATERIALS: FUNDAMENTALS AND APPLICATIONS II, 2009, 7392
  • [6] Devaney Chaos And Expansive Map On The Hyperspace Of Topological Group Action
    Ji Zhan-jiang
    2019 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS 2019), 2019, : 409 - 412
  • [7] Martelli’s Chaos in Inverse Limit Dynamical Systems and Hyperspace Dynamical Systems
    Lei Liu
    Shuli Zhao
    Results in Mathematics, 2013, 63 : 195 - 207
  • [8] Martelli's Chaos in Inverse Limit Dynamical Systems and Hyperspace Dynamical Systems
    Liu, Lei
    Zhao, Shuli
    RESULTS IN MATHEMATICS, 2013, 63 (1-2) : 195 - 207
  • [9] HYPERSPACE
    JUENEMAN, FB
    R&D MAGAZINE, 1995, 37 (09): : 11 - 12
  • [10] Hyperspace
    Obermaier, Klaus
    BALLETTANZ, 2006, : 44 - 48