Online Informative Path Planning using Sparse Gaussian Processes

被引:0
|
作者
Mishra, Rajat [1 ]
Chitre, Mandar [1 ,2 ]
Swarup, Sanjay [3 ]
机构
[1] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, Singapore, Singapore
[2] Natl Univ Singapore, Fac Engn, Singapore, Singapore
[3] Natl Univ Singapore, Dept Biol Sci, Singapore, Singapore
关键词
SAMPLING FREQUENCY;
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Estimating the environmental fields for large survey areas is a difficult task, primarily because of the field's spatio-temporal nature. A good approach in performing this task is to do adaptive sampling using robots. In such a scenario, robots have limited time to collect data before the field varies significantly. In this paper, we suggest an algorithm, AdaPP, to perform this task of data collection within a constraint on sampling time and provide an approximation of the environmental field. We test our performance against conventional sampling paths and show that we are able to obtain a good approximation of the field within the stipulated time.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Gaussian processes and Fast Marching Square based informative path planning
    Munoz, Javier
    Lopez, Blanca
    Quevedo, Fernando
    Garrido, Santiago
    Monje, Concepcion A.
    Moreno, Luis E.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121
  • [2] Informative path planning for scalar dynamic reconstruction using coregionalized Gaussian processes and a spatiotemporal kernel
    Booth, Lorenzo
    Carpin, Stefano
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 8112 - 8119
  • [3] Informative Path Planning Using Physics-Informed Gaussian Processes for Aerial Mapping of 5G Networks
    Gruner , Jonas F.
    Graßhoff , Jan
    Wembers , Carlos Castelar
    Schweppe , Kilian
    Schildbach , Georg
    Rostalski , Philipp
    Sensors, 2024, 24 (23)
  • [4] Online anomaly detection with sparse Gaussian processes
    Gu, Minghao
    Fei, Jingjing
    Sun, Shiliang
    NEUROCOMPUTING, 2020, 403 : 383 - 399
  • [5] Active Online Learning for Interactive Segmentation Using Sparse Gaussian Processes
    Triebel, Rudolph
    Stuehmer, Jan
    Souiai, Mohamed
    Cremers, Daniel
    PATTERN RECOGNITION, GCPR 2014, 2014, 8753 : 641 - 652
  • [6] Online Informative Path Planning of Autonomous Vehicles Using Kernel-Based Bayesian Optimization
    Xu, Yang
    Zheng, Ronghao
    Zhang, Senlin
    Liu, Meiqin
    Yu, Junzhi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (08) : 3790 - 3794
  • [7] Informed expansion for informative path planning via online distribution learning
    Zacchini, Leonardo
    Ridolfi, Alessandro
    Allotta, Benedetto
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2023, 166
  • [8] Informative Planning for Worst-Case Error Minimisation in Sparse Gaussian Process Regression
    Wakulicz, Jennifer
    Lee, Ki Myung Brian
    Yoo, Chanyeol
    Vidal-Calleja, Teresa
    Fitch, Robert
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 11066 - 11072
  • [9] Sparse within Sparse Gaussian Processes using Neighbor Information
    Tran, Gia-Lac
    Milios, Dimitrios
    Michiardi, Pietro
    Filippone, Maurizio
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139 : 7379 - 7389
  • [10] Sparse Gaussian processes using backward elimination
    Bo, Liefeng
    Wang, Ling
    Jiao, Licheng
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 1, 2006, 3971 : 1083 - 1088