Space-Efficient Vertex Separators for Treewidth

被引:1
|
作者
Kammer, Frank [1 ]
Meintrup, Johannes [1 ]
Sajenko, Andrej [1 ]
机构
[1] Univ Appl Sci Mittelhessen, THM, Giessen, Germany
关键词
FPT; Tree decomposition; Network flow; Subgraph stack; ALGORITHMS; GRAPHS; TIME;
D O I
10.1007/s00453-022-00967-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For n-vertex graphs with treewidth k = O(n(1/2-epsilon)) and an arbitrary epsilon > 0, we present a word-RAM algorithm to compute vertex separators using only O(n) bits of working memory. As an application of our algorithm, we give an O(1)-approximation algorithm for tree decomposition. Our algorithm computes a tree decomposition in c(k)n (log log n) log* n time using O(n) bits for some constant c > 0. Together with the result of Banerjee et al. (Proceedings of 21st international conference on computing and combinatorics (COCOON 2015). LNCS, vol 9198, Springer, pp 349-360, 2015. hups://doi.org/10.1007/978-3-319-21398-9_28) we are able to compute a solution for all monadic-second-order problems (MSO) with O (n + tau (k) . p(log(p) n) log n) bits in O(tau(k) . n(2+(2/ log p)) ) time where k is the treewidth of the given graph, p is some arbitrary parameter with 2 <= p <= n and tau is some function depending on the MSO formula. We finally use the tree decomposition obtained by our algorithm to solve VERTEX COVER, INDEPENDENT SET, DOMINATING SET, MAXCUT and q -COLORING by using polynomial time and O(n) bits as long as the treewidth of the graph is smaller than c' log n for some problem dependent constant 0 < c' < 1.
引用
下载
收藏
页码:2414 / 2461
页数:48
相关论文
共 50 条
  • [1] Space-Efficient Vertex Separators for Treewidth
    Frank Kammer
    Johannes Meintrup
    Andrej Sajenko
    Algorithmica, 2022, 84 : 2414 - 2461
  • [2] Bounded Treewidth and Space-Efficient Linear Algebra
    Balaji, Nikhil
    Datta, Samir
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2015), 2015, 9076 : 297 - 308
  • [3] Safe separators for treewidth
    Bodlaender, HL
    Koster, AMCA
    DISCRETE MATHEMATICS, 2006, 306 (03) : 337 - 350
  • [4] Space-efficient outlines from image data via vertex minimization and grid constraints
    Hobby, JD
    GRAPHICAL MODELS AND IMAGE PROCESSING, 1997, 59 (02): : 73 - 88
  • [5] The Space-Efficient Core of Vadalog
    Berger, Gerald
    Gottlob, Georg
    Pieris, Andreas
    Sallinger, Emanuel
    PROCEEDINGS OF THE 38TH ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS (PODS '19), 2019, : 270 - 284
  • [6] SPACE-EFFICIENT PARALLEL MERGING
    KATAJAINEN, J
    LEVCOPOULOS, C
    PETERSSON, O
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1993, 27 (04): : 295 - 310
  • [7] Space-Efficient Latent Contracts
    Greenberg, Michael
    TRENDS IN FUNCTIONAL PROGRAMMING (TFP 2016), 2019, 10447 : 3 - 23
  • [8] Space-Efficient Manifest Contracts
    Greenberg, Michael
    ACM SIGPLAN NOTICES, 2015, 50 (01) : 181 - 194
  • [9] Space-efficient gradual typing
    Herman D.
    Tomb A.
    Flanagan C.
    Higher-Order and Symbolic Computation, 2010, 23 (02) : 167 - 189
  • [10] Space-efficient search algorithms
    Korf, RE
    ACM COMPUTING SURVEYS, 1995, 27 (03) : 337 - 339