OPTIMIZED SCHWARZ AND 2-LAGRANGE MULTIPLIER METHODS FOR MULTISCALE ELLIPTIC PDES

被引:8
|
作者
Loisel, Sebastien [1 ]
Hieu Nguyen [2 ]
Scheichl, Robert [3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Univ Politecn Cataluna, CIMNE, Castelldefels 08860, Spain
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2015年 / 37卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
domain decomposition; coefficient dependent coarse space; adaptive coarse space enrichment; Dirichlet to Neumann generalized eigenproblem; multiscale PDEs; heterogeneous media; DOMAIN DECOMPOSITION PRECONDITIONERS; ADDITIVE SCHWARZ; GENERAL DOMAINS; CONVERGENCE; COEFFICIENTS; SIMULATION; EQUATIONS; DEFLATION; SYSTEMS; FLOWS;
D O I
10.1137/15M1009676
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we formulate and analyze a two-level preconditioner for optimized Schwarz and 2-Lagrange multiplier methods for PDEs with highly heterogeneous (multiscale) diffusion coefficients. The preconditioner is equipped with an automatic coarse space consisting of low-frequency modes of approximate subdomain Dirichlet-to-Neumann maps. Under a suitable change of basis, the preconditioner is a 2 x 2 block upper triangular matrix with the identity matrix in the upper-left block. We show that the spectrum of the preconditioned system is included in the disk having center z = 1/2 and radius r = 1/2 - epsilon, where 0 < epsilon < 1/2 is a parameter that we can choose. We further show that the GMRES algorithm applied to our heterogeneous system converges in O(1/epsilon) iterations (neglecting certain polylogarithmic terms). The number epsilon can be made arbitrarily large by automatically enriching the coarse space. Our theoretical results are confirmed by numerical experiments.
引用
收藏
页码:A2896 / A2923
页数:28
相关论文
共 26 条
  • [1] HETEROGENEOUS OPTIMIZED SCHWARZ METHODS FOR SECOND ORDER ELLIPTIC PDES
    Gander, Martin J.
    Vanzan, Tommaso
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : A2329 - A2354
  • [2] CONDITION NUMBER ESTIMATES FOR THE NONOVERLAPPING OPTIMIZED SCHWARZ METHOD AND THE 2-LAGRANGE MULTIPLIER METHOD FOR GENERAL DOMAINS AND CROSS POINTS
    Loisel, Sebastien
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (06) : 3062 - 3083
  • [3] Solving Large Systems on HECToR Using the 2-Lagrange Multiplier Methods
    Karangelis, Anastasios
    Loisel, Sebastien
    Maynard, Chris
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 : 497 - 505
  • [4] On Schwarz alternating methods for nonlinear elliptic PDEs
    Lui, SH
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (04): : 1506 - 1523
  • [5] On monotone and Schwarz alternating methods for nonlinear elliptic PDEs
    Lui, SH
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (01): : 1 - 15
  • [6] On linear monotone iteration and Schwarz methods for nonlinear elliptic PDEs
    Lui S.H.
    [J]. Numerische Mathematik, 2002, 93 (1) : 109 - 129
  • [7] On linear monotone iteration and Schwarz methods for nonlinear elliptic PDEs
    Lui, SH
    [J]. NUMERISCHE MATHEMATIK, 2002, 93 (01) : 109 - 129
  • [8] CONDITION NUMBER ESTIMATES AND WEAK SCALING FOR 2-LEVEL 2-LAGRANGE MULTIPLIER METHODS FOR GENERAL DOMAINS AND CROSS POINTS
    Karangelis, Anastasios
    Loisel, Sebastien
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02): : C247 - C267
  • [9] Optimized overlapping Schwarz methods for parabolic PDEs with time-delay
    Vandewalle, S
    Gander, MJ
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 291 - 298
  • [10] MULTILEVEL MONTE CARLO METHODS FOR STOCHASTIC ELLIPTIC MULTISCALE PDES
    Abdulle, Assyr
    Barth, Andrea
    Schwab, Christoph
    [J]. MULTISCALE MODELING & SIMULATION, 2013, 11 (04): : 1033 - 1070