Total coloring of recursive maximal planar graphs

被引:3
|
作者
Zhou, Yangyang [1 ]
Zhao, Dongyang [1 ]
Ma, Mingyuan [1 ]
Xu, Jin [1 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Beijing, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Total coloring; Total chromatic number; Recursive maximal planar graph; (2,2)-recursive maximal planar graph; Total coloring algorithm; TOTAL CHROMATIC NUMBER;
D O I
10.1016/j.tcs.2022.01.024
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The recursive maximal planar graphs can be obtained from K-4, by embedding a 3-vertex in a triangular face continuously. A total k-coloring of a graph G is a coloring of its vertices and edges such that no two adjacent or incident elements receive the same color. The Total Coloring Conjecture, in short, TCC, states that every simple graph G is totally (Delta + 2)-colorable, where Delta is the maximum degree of G. In this paper, we prove that TCC holds for recursive maximal planar graphs, especially, a main class of recursive maximal planar graphs, named (2,2)-recursive maximal planar graphs, are totally (Delta + 1)-colorable. Moreover, we give linear time algorithms for total coloring of recursive maximal planar graphs and (2,2)-recursive maximal planar graphs, respectively. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:12 / 18
页数:7
相关论文
共 50 条
  • [1] Total Coloring of Dumbbell Maximal Planar Graphs
    Zhou, Yangyang
    Zhao, Dongyang
    Ma, Mingyuan
    Xu, Jin
    [J]. MATHEMATICS, 2022, 10 (06)
  • [2] ON THE TOTAL COLORING OF PLANAR GRAPHS
    BORODIN, OV
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 394 : 180 - 185
  • [3] On Maximal Cycles or Triangular Planar Polygonal Graphs and Their Coloring
    Jara-Vera, Vicente
    Sanchez-Avila, Carmen
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (01): : 185 - 197
  • [4] Coloring the square of maximal planar graphs with diameter two
    Wang, Yiqiao
    Huo, Jingjing
    Kong, Jiangxu
    Tan, Qiuyue
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2023, 459
  • [5] A note on the minimum total coloring of planar graphs
    Wang, Hui Juan
    Luo, Zhao Yang
    Liu, Bin
    Gu, Yan
    Gao, Hong Wei
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (08) : 967 - 974
  • [6] A Note on the Minimum Total Coloring of Planar Graphs
    Hui Juan WANG
    Zhao Yang LUO
    Bin LIU
    Yan GU
    Hong Wei GAO
    [J]. Acta Mathematica Sinica,English Series, 2016, (08) : 967 - 974
  • [7] A note on the minimum total coloring of planar graphs
    Hui Juan Wang
    Zhao Yang Luo
    Bin Liu
    Yan Gu
    Hong Wei Gao
    [J]. Acta Mathematica Sinica, English Series, 2016, 32 : 967 - 974
  • [8] A Note on the Minimum Total Coloring of Planar Graphs
    Hui Juan WANG
    Zhao Yang LUO
    Bin LIU
    Yan GU
    Hong Wei GAO
    [J]. Acta Mathematica Sinica., 2016, 32 (08) - 974
  • [9] Total Coloring of Claw-Free Planar Graphs
    Liang, Zuosong
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (03) : 771 - 777
  • [10] Total coloring of planar graphs without short cycles
    Hua Cai
    Jianliang Wu
    Lin Sun
    [J]. Journal of Combinatorial Optimization, 2016, 31 : 1650 - 1664