Feature Selection with Data Field

被引:0
|
作者
Yuan Hanning [1 ]
Wang Shuliang [1 ,2 ]
Li Ying [2 ]
Fan Jinghua [3 ]
机构
[1] Beijing Inst Technol, Sch Software, Beijing 100081, Peoples R China
[2] State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Int Sch Software, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Potential entropy; Data field; Feature selection; Dimension reduction; High-dimensional objects;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new feature selection method is proposed for high-dimensional data clustering on the basis of data field. With the potential entropy to evaluate the importance of feature subsets, features are filtered by removing unimportant features or noises from the original datasets. Experiments show that the proposed method can sharply reduce the number of dimensions and effectively improve the clustering performance on WDBC dataset.
引用
收藏
页码:661 / 665
页数:5
相关论文
共 50 条
  • [1] Feature Selection with Data Field
    YUAN Hanning
    WANG Shuliang
    LI Ying
    FAN Jinghua
    [J]. Chinese Journal of Electronics, 2014, 23 (04) : 661 - 665
  • [2] A new online field feature selection algorithm based on streaming data
    Zhang Z.
    Song F.
    Zhang P.
    Chao H.-C.
    Zhao Y.
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (02) : 1365 - 1377
  • [3] Feature Selection for Unlabeled Data
    Chen, Chien-Hsing
    [J]. ADVANCES IN SWARM INTELLIGENCE, PT II, 2011, 6729 : 269 - 274
  • [4] Feature Selection: A Data Perspective
    Li, Jundong
    Cheng, Kewei
    Wang, Suhang
    Morstatter, Fred
    Trevino, Robert P.
    Tang, Jiliang
    Liu, Huan
    [J]. ACM COMPUTING SURVEYS, 2018, 50 (06)
  • [5] Feature selection for unlabeled data
    Dy, JG
    [J]. IEEE INTELLIGENT SYSTEMS, 2005, 20 (06) : 66 - 68
  • [6] Feature selection for functional data
    Fraiman, Ricardo
    Gimenez, Yanina
    Svarc, Marcela
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 146 : 191 - 208
  • [7] Synthetic Data for Feature Selection
    Kamalov, Firuz
    Sulieman, Hana
    Cherukuri, Aswani Kumar
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2023, PT II, 2023, 14126 : 353 - 365
  • [8] Feature Selection in Imbalanced Data
    Kamalov F.
    Thabtah F.
    Leung H.H.
    [J]. Annals of Data Science, 2023, 10 (06) : 1527 - 1541
  • [9] Spectral feature selection and classification of roofing materials using field spectroscopy data
    Samsudin, Sarah Hanim
    Shafri, Helmi Z. M.
    Hamedianfar, Alireza
    Mansor, Shattri
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2015, 9
  • [10] Feature subset selection for data and feature streams: a review
    Carlos Villa-Blanco
    Concha Bielza
    Pedro Larrañaga
    [J]. Artificial Intelligence Review, 2023, 56 : 1011 - 1062