Magnetic shear due to localized toroidal flow shear in tokamaks

被引:5
|
作者
Lee, Jungpyo [1 ,2 ]
Cerfon, Antoine [3 ]
机构
[1] Hanyang Univ, Nucl Engn Dept, Seoul, South Korea
[2] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
关键词
tokamak; toroidal rotation; MHD equilibrium; magnetic shear; plasma equilibrium shape; AXISYMMETRICAL MHD EQUILIBRIA; INTERNAL KINK MODE; PLASMA ROTATION; STABILIZATION; STABILITY; TRANSPORT; COMPUTATION; TURBULENCE; ICRF;
D O I
10.1088/1361-6587/ab3a7f
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the impact of toroidal rotation on axisymmetric MHD equilibria analytically and numerically, with a focus on the change of the safety factor and magnetic shear induced by the flow. When the toroidal rotation is radially localized by an external momentum source, the pressure due to the flow can change the magnetic configuration and the safety factor significantly, even for subsonic flows. Specifically, when the radial profile of the safety factor is not conserved throughout a discharge, toroidal flow can lead to magnetic shear reversal for the equilibrium magnetic field, and we find that the magnitude of the negative shear is amplified for cross sections with large negative triangularity. This has implications for both magnetohydrodynamic stability and anomalous transport. Furthermore, even when the magnetic flux is conserved and the radial magnetic shear profile does not change, the toroidal flow can modify the local magnetic shear. The poloidal variations of the local magnetic shear due to the flow can stabilize magnetohydrodynamic ballooning modes.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Rotation profile flattening and toroidal flow shear reversal due to the coupling of magnetic islands in tokamaks
    Tobias, B.
    Chen, M.
    Classen, I. G. J.
    Domier, C. W.
    Fitzpatrick, R.
    Grierson, B. A.
    Luhmann, N. C., Jr.
    Muscatello, C. M.
    Okabayashi, M.
    Olofsson, K. E. J.
    Paz-Soldan, C.
    [J]. PHYSICS OF PLASMAS, 2016, 23 (05)
  • [2] Microstability in tokamaks with low magnetic shear
    Connor, JW
    Hastie, RJ
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2004, 46 (10) : 1501 - 1535
  • [3] Mechanism of stabilization of ballooning modes by toroidal rotation shear in tokamaks
    Furukawa, M
    Tokuda, S
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (17)
  • [4] Stabilization mechanism of ballooning modes by toroidal rotation shear in tokamaks
    Furukawa, M
    Tokuda, S
    [J]. NUCLEAR FUSION, 2005, 45 (05) : 377 - 383
  • [5] Escaping and transport barrier due to ergodic magnetic limiters in tokamaks with reversed magnetic shear
    da Silva, Elton C.
    Roberto, Marisa
    Portela, Jefferson S. E.
    Caldas, Ibere L.
    Viana, Ricardo L.
    [J]. NUCLEAR FUSION, 2006, 46 (04) : S192 - S198
  • [6] Symmetry breaking in MAST plasma turbulence due to toroidal flow shear
    Fox, M. F. J.
    van Wyk, F.
    Field, A. R.
    Ghim, Y-c
    Parra, F. I.
    Schekochihin, A. A.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (03)
  • [7] Shear-dependant toroidal vortex flow
    Nariman Ashrafi Khorasani
    Habib Karimi Haghighi
    [J]. Journal of Mechanical Science and Technology, 2013, 27 : 85 - 94
  • [8] Shear-dependant toroidal vortex flow
    Khorasani, Nariman Ashrafi
    Haghighi, Habib Karimi
    [J]. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2013, 27 (01) : 85 - 94
  • [9] Role of magnetic shear in flow shear suppression
    Kim, Eun-jin
    [J]. PHYSICS OF PLASMAS, 2007, 14 (08)
  • [10] IMPROVED PLASMA PERFORMANCE IN TOKAMAKS WITH NEGATIVE MAGNETIC SHEAR
    KESSEL, C
    MANICKAM, J
    REWOLDT, G
    TANG, WM
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (08) : 1212 - 1215