Hierarchical spline spaces: quasi-interpolants and local approximation estimates

被引:29
|
作者
Speleers, Hendrik [1 ]
机构
[1] Univ Roma Tor Vergata, Dept Math, Via Ric Sci, I-00133 Rome, Italy
关键词
Local approximation; Quasi-interpolation; Hierarchical bases; Local refinement; Tensor-product B-splines; MARKOV-TYPE INEQUALITIES; MULTIVARIATE POLYNOMIALS; BERNSTEIN;
D O I
10.1007/s10444-016-9483-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A local approximation study is presented for hierarchical spline spaces. Such spaces are composed of a hierarchy of nested spaces and provide a flexible framework for local refinement in any dimensionality. We provide approximation estimates for general hierarchical quasi-interpolants expressed in terms of the truncated hierarchical basis. Under some mild assumptions, we prove that such hierarchical quasi-interpolants and their derivatives possess optimal local approximation power in the general q-norm with . In addition, we detail a specific family of hierarchical quasi-interpolants defined on uniform hierarchical meshes in any dimensionality. The construction is based on cardinal B-splines of degree p and central factorial numbers of the first kind. It guarantees polynomial reproduction of degree p and it requires only function evaluations at grid points (odd p) or half-grid points (even p). This results in good approximation properties at a very low cost, and is illustrated with some numerical experiments.
引用
收藏
页码:235 / 255
页数:21
相关论文
共 50 条
  • [1] Hierarchical spline spaces: quasi-interpolants and local approximation estimates
    Hendrik Speleers
    Advances in Computational Mathematics, 2017, 43 : 235 - 255
  • [2] Increasing the approximation order of spline quasi-interpolants
    Barrera, D.
    Guessab, A.
    Ibanez, M. J.
    Nouisser, O.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 252 : 27 - 39
  • [3] A multinomial spline approximation scheme using spline quasi-interpolants
    Xu, Min
    Fang, Qin
    Wang, Ren-Hong
    Jiang, Zi-Wu
    Liu, Ming-Zeng
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 5081 - 5089
  • [4] High order approximation by CCC-spline quasi-interpolants
    Bosner, Tina
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 442
  • [5] Bivariate Simplex Spline Quasi-Interpolants
    D.Sbibih
    A.Serghini
    A.Tijini
    NumericalMathematics:Theory,MethodsandApplications, 2010, (01) : 97 - 118
  • [6] A Family of Spline Quasi-Interpolants on the Sphere
    O. Nouisser
    D. Sbibih
    Paul Sablonnière
    Numerical Algorithms, 2003, 33 : 399 - 413
  • [7] Bivariate Simplex Spline Quasi-Interpolants
    Sbibih, D.
    Serghini, A.
    Tijini, A.
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2010, 3 (01) : 97 - 118
  • [8] Simultaneous approximation and quasi-interpolants
    Zhao, K
    JOURNAL OF APPROXIMATION THEORY, 1996, 85 (02) : 201 - 217
  • [9] Differentiation Based on Optimal Local Spline Quasi-Interpolants with Applications
    Dagnino, Catterina
    Remogna, Sara
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 2025 - 2028
  • [10] A family of spline quasi-interpolants on the sphere
    Nouisser, O
    Sbibih, D
    Sablonnière, P
    NUMERICAL ALGORITHMS, 2003, 33 (1-4) : 399 - 413