On the Stokes and Oseen Problems with Singular Data

被引:5
|
作者
Tartaglione, Alfonsina [1 ]
机构
[1] Univ Naples 2, Dept Math & Phys, I-81100 Caserta, Italy
关键词
Steady-state Stokes; Oseen and Navier-Stokes equations; boundary-value problems; very weak solutions; bounded and exterior domains; NAVIER; UNIQUENESS; EQUATIONS; EXISTENCE;
D O I
10.1007/s00021-013-0161-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the steady Stokes and Oseen problems in bounded and exterior domains of R-n of class C (k-1,1) (n = 2, 3; k >= 2). We prove existence and uniqueness of a very weak solution for boundary data a in W-2-k-1/q,W-q(partial derivative Omega). If Omega is of class C-infinity, we can assume a to be a distribution on partial derivative Omega.
引用
收藏
页码:407 / 417
页数:11
相关论文
共 50 条
  • [1] On the Stokes and Oseen Problems with Singular Data
    Alfonsina Tartaglione
    Journal of Mathematical Fluid Mechanics, 2014, 16 : 407 - 417
  • [2] Stationary Stokes, Oseen and Navier–Stokes Equations with Singular Data
    Chérif Amrouche
    M. Ángeles Rodríguez-Bellido
    Archive for Rational Mechanics and Analysis, 2011, 199 : 597 - 651
  • [3] Stationary Stokes, Oseen and Navier-Stokes Equations with Singular Data
    Amrouche, Cherif
    Angeles Rodriguez-Bellido, M.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (02) : 597 - 651
  • [4] Very weak solutions to the rotating Stokes, Oseen and Navier-Stokes problems in weighted spaces
    Kracmar, S.
    Krbec, M.
    Necasova, S.
    Penel, P.
    Schumacher, K.
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (11-12) : 1466 - 1487
  • [5] A geometric multigrid method for isogeometric compatible discretizations of the generalized Stokes and Oseen problems
    Coley, Christopher
    Benzaken, Joseph
    Evans, John A.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (03)
  • [6] Uniqueness and nonuniqueness of the Stokes and Oseen flows
    R. B. Guenther
    E. L. Roetman
    Journal of Fixed Point Theory and Applications, 2013, 13 : 519 - 527
  • [7] Parallel adaptive solution of the Stokes and Oseen problems on unstructured 3D meshes
    Lipnikov, K
    Vassilevski, Y
    PARALLEL COMPUTATIONAL FLUID DYNAMICS: ADVANCED NUMERICAL METHODS SOFTWARE AND APPLICATIONS, 2004, : 153 - 161
  • [8] Uniqueness and nonuniqueness of the Stokes and Oseen flows
    Guenther, R. B.
    Roetman, E. L.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2013, 13 (02) : 519 - 527
  • [10] The spatial operator in the incompressible Navier-Stokes, Oseen and Stokes equations
    Nordstrom, Jan
    Lauren, Fredrik
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 363