A NOTE ON TRIANGULAR OPERATORS ON SMOOTH SEQUENCE SPACES

被引:2
|
作者
Uyanik, Elif [1 ]
Yurdakul, Murat Hayrettin [1 ]
机构
[1] Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkey
来源
OPERATORS AND MATRICES | 2019年 / 13卷 / 02期
关键词
Kothe spaces; smooth sequence spaces; Cauchy product;
D O I
10.7153/oam-2019-13-24
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a scalar sequence (theta(n))(n is an element of N), let C be the matrix defined by c(n)(k) = theta(n-k+1) if n >= k, c(n)(k) = 0 if n < k. The map between Kothe spaces lambda(A) and lambda(B) is called a Cauchy Product map if it is determined by the triangular matrix C. In this note we introduced some necessary and sufficient conditions for a Cauchy Product map on a nuclear Kothe space lambda(A) to nuclear G(1) - space lambda(B) to be linear and continuous. Its transpose is also considered.
引用
收藏
页码:343 / 347
页数:5
相关论文
共 50 条
  • [1] TRIANGULAR OPERATORS ON SEQUENCE SPACES
    BARNES, BA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1967, 42 (168P): : 634 - &
  • [2] Smooth points in spaces of operators
    Rao, T. S. S. R. K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 517 : 129 - 133
  • [3] A NOTE ON COTYPE OF SMOOTH SPACES
    DEVILLE, R
    ZIZLER, VE
    MANUSCRIPTA MATHEMATICA, 1988, 62 (03) : 375 - 382
  • [4] NOTE ON SMOOTH BANACH SPACES
    LEONARD, E
    SUNDARESAN, K
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 43 (02) : 450 - 454
  • [5] On Differential Operators on Sequence Spaces
    M Maldonado
    J Prada
    M J Senosiain
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 345 - 352
  • [6] OPERATORS ON LORENTZ SEQUENCE SPACES
    Arora, S. C.
    Datt, Gopal
    Verma, Satish
    MATHEMATICA BOHEMICA, 2009, 134 (01): : 87 - 98
  • [7] On Differential Operators on Sequence Spaces
    Maldonado, M.
    Prada, J.
    Senosiain, M. J.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) : 345 - 352
  • [8] STABILITY OF SMOOTH SEQUENCE SPACES
    TERZIOGLU, T
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1975, 276 : 184 - 189
  • [9] Adjoints of operators as smooth points in spaces of compact operators
    Rao, T. S. S. R. K.
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04): : 668 - 670
  • [10] Very smooth points of spaces of operators
    T. S. S. R. K. Rao
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2003, 113 : 53 - 64