Local and global reducibility of spaces of nilpotent matrices

被引:0
|
作者
Mastnak, Mitja [1 ]
Omladic, Matjaz [2 ]
Radjavi, Heydar [3 ]
Sivic, Klemen [4 ]
机构
[1] St Marys Univ, Dept Math, Halifax, NS, Canada
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Waterloo, Dept Pure Math, Waterloo, ON, Canada
[4] Univ Ljubljana, Dept Math, Ljubljana, Slovenia
基金
加拿大自然科学与工程研究理事会;
关键词
Linear spaces of nilpotent matrices; Reducibility; Triangularizability; Order of nilpotency; Compact operators; Quasinilpotent operators;
D O I
10.1016/j.laa.2020.10.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We explore the relationship between local and global reducibility of spaces of nilpotent matrices. By local reducibility we mean that small subspaces of a given irreducible linear space L subset of M-n (C) are reducible. One of our main results is that for certain integers m depending on n there is an (m+1)-dimensional space L which is irreducible, but every one of its m-dimensional subspaces is, not just reducible, but simultaneously triangularizable. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:260 / 278
页数:19
相关论文
共 50 条
  • [1] On the dimension of linear spaces of nilpotent matrices
    MacDonald, G. W.
    MacDougall, J. A.
    Sweet, L. G.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) : 2210 - 2230
  • [2] Linear spaces of symmetric nilpotent matrices
    Bukovsek, Damjana Kokol
    Omladic, Matjaz
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 530 : 384 - 404
  • [3] On certain linear spaces of nilpotent matrices
    Fasoli, MA
    Pauer, F
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (10) : 3149 - 3154
  • [4] LINEAR-SPACES OF NILPOTENT MATRICES
    MATHES, B
    OMLADIC, M
    RADJAVI, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 149 : 215 - 225
  • [5] LINEAR-SPACES OF TOEPLITZ AND NILPOTENT MATRICES
    BRUALDI, RA
    CHAVEY, KL
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 63 (01) : 65 - 78
  • [6] Jordan type stratification of spaces of commuting nilpotent matrices
    Boij, Mats
    Iarrobino, Anthony
    Khatami, Leila
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 710 : 183 - 202
  • [7] Nilpotent commutators and reducibility of semigroups
    Omladic, Matjaz
    Radjavi, Heydar
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (03): : 307 - 317
  • [8] Homotopy type of moduli spaces of G-Higgs bundles and reducibility of the nilpotent cone
    Florentino, C.
    Gothen, P. B.
    Nozad, A.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 150 : 84 - 101
  • [9] Local automorphisms of nilpotent algebras of matrices of small orders
    Elisova A.P.
    Russian Mathematics, 2013, 57 (2) : 34 - 41
  • [10] THE LOCAL AND GLOBAL VARIETIES INDUCED BY NILPOTENT MONOIDS
    WEISS, A
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1986, 20 (03): : 339 - 355