DERIVATIVE-EXTENDED POD REDUCED-ORDER MODELING FOR PARAMETER ESTIMATION

被引:8
|
作者
Schmidt, A. [1 ]
Potschka, A. [1 ]
Koerkel, S. [1 ]
Bock, H. G. [1 ]
机构
[1] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, D-69120 Heidelberg, Germany
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2013年 / 35卷 / 06期
关键词
proper orthogonal decomposition; parameter estimation; error estimates; PROPER ORTHOGONAL DECOMPOSITION; ERROR; REDUCTION; EQUATION;
D O I
10.1137/120896694
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we consider model reduction via proper orthogonal decomposition (POD) and its application to parameter estimation problems constrained by parabolic PDEs. We use a first discretize then optimize approach to solve the parameter estimation problem and show that the use of derivative information in the reduced-order model is important. We include directional derivatives directly in the POD snapshot matrix and show that, equivalently to the stationary case, this extension yields a more robust model with respect to changes in the parameters. Moreover, we propose an algorithm that uses derivative-extended POD models together with a Gauss-Newton method. We give an a posteriori error estimate that indicates how far a suboptimal solution obtained with the reduced problem deviates from the solution of the high dimensional problem. Finally we present numerical examples that showcase the efficiency of the proposed approach.
引用
收藏
页码:A2696 / A2717
页数:22
相关论文
共 50 条